May 2016 Paper-II

1. The value of the integral

$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} dx$$

is:

(a) $\frac{\pi^2}{2}$

(b) 0

(c) $\frac{\pi^2}{9}$

- (d) 2π
- 2. The Fourier transform of a Gaussian function is of the form :
 - (a) Exponential
- (b) Lorentzian
- (c) Gaussian
- (d) Screened coulomb
- 3 The real part of $\log (3 + 4i)$ is:
 - (a) log 2

(b) log 3

(c) log 4

- (d) log 5
- 4 Particular integral of the first order linear differential equation

$$\frac{dy}{dx} = x + y$$

is given by:

- (a) y(x) = -x 1
- (b) y(x) = x + 1
- (c) y(x) = x 1
- (d) y(x) = -x + 1
- 5 Eigenvalues of the matrix

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

are:

(a) 1, -1

(b) -1, -i

(c) i, -i

- (d) 1 + i, 1 i
- 6 $\nabla \left(\frac{1}{\vec{r}_{l}}\right)$ is given by:
 - (a) $\frac{1}{r}$ r̂

(b) $\frac{1}{r^3}(\hat{\imath} + \hat{\jmath} + \hat{k})$

(c) $\frac{\vec{r}}{r^3}$

(d) $r(\hat{\imath} - \hat{\jmath} - \hat{k})$

- 7 If a coin is tossed four times, what is the probability that two heads and two tails will result?
 - (a) $\frac{3}{8}$

(b) $\frac{1}{2}$

(c) $\frac{5}{8}$

- (d) $\frac{3}{4}$
- 8 Which of the following defines a conservative force?
 - (a) $\vec{\nabla} \cdot \vec{F} = 0$
- (b) $\vec{\nabla} \times \vec{F} = 0$
- (c) $\oint \vec{F} \cdot \overrightarrow{dr} = 0$
- $(d)\frac{d\vec{F}}{dt} = 0$
- 9 Consider the three vectors:

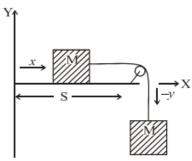
$$\vec{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$$

$$\vec{b} = \hat{\imath} - \hat{\jmath} + \hat{k}$$
 and

$$\vec{c} = \hat{\imath} - \hat{\jmath} - \hat{k}$$

Which of the following statements is true?

- (a) \vec{a} , \vec{b} , \vec{c} are linearly independent
- (b) \vec{a} , \vec{b} are linearly dependent
- (c) \vec{b} , \vec{c} are at right angles to each other
- (d) \vec{a} and \vec{c} are parallel
- 10 The moment of inertia of a thin disc of radius R about an axis passing though its center and perpendicular to the plane of the disc is:
 - (a) MR²


- (b) $\frac{2}{3}$ MR²
- (c) $\frac{3}{2}$ MR²
- (d) $\frac{1}{2}MR^2$
- 11 A thin rigid rod of length 'l' is moving inside a sphere of radius R(R>l) such that both of its ends are in contact with the inner surface of the sphere. The degree of freedom of the rod are :
 - (a) Four

(b) Three

(c) Two

- (d) One
- 12 For a system shown in figure given below, the Lagrangian function is given by:

$$(V = 0, at y = 0)$$

$$(a)L = M\dot{y}^2 + Mgy$$

$$(b)L = \frac{1}{2}M\dot{y}^2 + Mgy$$

$$(c)L = \frac{1}{2}M\dot{y}^{2} - Mg(y - x)$$

(d) L =
$$M\dot{y}^2 + Mg(y - x)$$

- 13 "Hamiltonian H is not equal to the total energy E (sum of kinetic and potential energies)" holds true for a system characterized with:
 - (a) conservative forces and time independent constraints
 - (b) conservative forces and time dependent constraints
 - (c) dissipative forces and time independent constraints
 - (d) for every system irrespective of the nature of forces and constraints
- 14 A particle moves under the action of force \overline{F} = $-\frac{1}{r^n}\hat{r}$. The particle moves in a closed orbit, if :

 - (a) n = -1 or n = 2 (b) n = 1 or n = -2
 - (c) n = -1 or n = -2 (d) n = 1 or n = 2

- 15 Which of the following statements holds true for a freely rotating rigid body?
 - (a) $\bar{\omega}$ and $\frac{d\bar{L}}{dt}$ are perpendicular to each other
 - (b) $\bar{\omega}$ and $\frac{d\bar{L}}{dt}$ are parallel to each other
 - (c) $\bar{\omega}$ and $\frac{d\bar{L}}{dt}$ are antiparallel to each other
 - (d) $\bar{\omega}$ and $\frac{d\bar{L}}{dt}$ do not have 0 specific relationship
- 16 A particle is at rest in a rotating frame of reference. The pseudoforce(s) acting on the particle is(are):
 - (a) None of these
 - (b) Only the Coriolis force
 - (c) Only the centrifugal force
 - (d) Both the centrifugal and Coriolis forces
- 17 The electric field of an electromagnetic wave propagating in the free space is given by:

$$\vec{E}(r,t) = E_0 \hat{z} \cos \left[200\sqrt{3}\pi x - 200\pi y - \omega t \right]$$

Then the wave vector \vec{k} is given by :

(a)
$$200 \frac{\sqrt{3}}{2} \pi \hat{x} - 200 \pi \hat{y}$$
 (b) $400 \pi \left[\frac{\sqrt{3}}{2} \hat{x} - \frac{1}{2} \hat{y} \right]$

(b)
$$400\pi \left[\frac{\sqrt{3}}{2} \hat{x} - \frac{1}{2} \hat{y} \right]$$

(c)
$$200\sqrt{3}\pi\hat{x}$$

(d)
$$-200\pi\hat{y}$$

18 The Ampere's law in the case of free space takes the form:

(a)
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

$$\text{(b)} \, \vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \varepsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

(c)
$$\vec{\nabla} \times \vec{B} = \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

(d)
$$\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} - \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$$

- 19 An electric charge +Q is placed at the center of a cube of sides 10 cm. The electric flux emanating from each of the face of the cube is:
 - (a) $\frac{Q}{\epsilon_0}$

(b) $\frac{Q}{10\epsilon_0}$

(c) $\frac{Q}{6\epsilon_0}$

- (d) $\frac{10Q}{\epsilon_0}$
- 20 A field at certain point in the space is expressed as the potential function $V = 3x^2z - xy^3 + z$. Then the potential V at point (2, -1, 1) is:
 - (a) 15 V

(b) 13 V

(c) 0 V

- (d) 8 V
- 21 The electric displacement vector at the interface of two dielectric media with unit normal vector \hat{n}_{12} from medium 1 to 2 and free surface charge density δ_s is given by :

(a)
$$\hat{n}_{12} \times (\overrightarrow{D_2} + \overrightarrow{D_1}) = \delta_s / \epsilon_0$$

(b)
$$(\overrightarrow{D_2} - \overrightarrow{D_1}) \times \hat{n}_{12} = \delta_s / \epsilon_0$$

(c)
$$(\overrightarrow{D_2} - \overrightarrow{D_1}) \cdot \hat{n}_{12} = \delta_s / \epsilon_0$$

(d)
$$(\overrightarrow{D_2} - \overrightarrow{D_1}) \cdot n_{12} = \delta_s / \epsilon_0$$

22 A plane polarized EM wave of frequency ω is incident at an angle θ in a rectangular wave guide of resonant frequency ω_{mn} . Then energy carried by the wave propagating inside the cavity will propagate with the group velocity of:

(a)
$$\frac{c}{\sqrt{1-\left(\frac{\omega_{mn}}{\omega}\right)^2}}$$
 (b) $c\sqrt{1-\frac{\omega_{mn}}{\omega}}$

(b)
$$c\sqrt{1-\frac{\omega_{mn}}{\omega}}$$

(c)
$$\frac{c}{\sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)}}$$
 (d) $c\sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2}$

23 A plane polarized electromagnetic wave is incident normally on an interface separating two dielectrics with intrinsic impedance equal to z_1 and z_2 . The reflection and transmission (Fresnel's) coefficients (R and T), respectively, are given as:

(a)
$$\frac{2z_2}{z_1 + z_2}$$
 and $\frac{z_2 - z_1}{z_1 + z_2}$ (b) $\frac{z_2 - z_1}{z_1 + z_2}$ and $\frac{z_2}{z_1 + z_2}$

(c)
$$\frac{z_2 - z_1}{z_1 + z_2}$$
 and $\frac{2z_2}{z_1 + z_2}$ (d) $\frac{2z_2}{z_1 + z_2}$ and $\frac{z_1 + z_2}{z_1 - z_2}$

- 24 If the divergence of a vector potential at a point $(\vec{\nabla} \cdot \vec{A})$ in the fluid is non-zero and takes positive value, then which of the following is correct? (a) The fluid is expanding
 - (b) The fluid density is decreasing with time
 - (c) The point acts as a source of fluid
 - (d) Statements (a), (b) and (c) all are correct
- 25 The electric field of an electromagnetic wave is described by the relation:

$$\vec{\mathrm{E}}(r,t)=(\hat{e}_1\mathrm{E}_1+\hat{e}_2\mathrm{E}_2)\cdot e^{i(\vec{k}\cdot\vec{r}-\omega t)}$$
 where \hat{e}_1 and \hat{e}_2 are two mutually orthogonal unit vectors both perpendicular to \vec{k} ; E_1 and E_2 are the electric field components along the two directions. What type of polarization state does this wave represent ?

- (a) Plane polarized
- (b) Left circularly polarized
- (c) Right circularly polarized
- (d) Elliptically polarized
- 26 A harmonic oscillator is perturbed by a perturbation potential αx^3 . The ground state energy of the oscillator to a first order in perturbation is:

	ı	ω
(a)	ħ	2

(b)
$$\hbar \frac{\omega}{2} + \alpha$$

(c)
$$\frac{3}{2}\hbar\omega + \alpha$$

(d)
$$\frac{\hbar\omega}{2} + \alpha^3$$

- 27 The value of operator $\vec{r}\cdot\vec{p}-\vec{p}\cdot\vec{r}$ in quantum mechanics is :
 - (a) *iħ*

(b) zero

(d)
$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)$$

- 28 a and a^+ are annihilation and creation operators for one dimensional harmonic oscillator. Then $aa^+a^+a^-$ | n > equals :
 - (a) $n^2 | n >$

(b)
$$(n+1)^2 | n >$$

(c)
$$n(n + 1) | n >$$

(d)
$$\sqrt{n(n+1)} \mid n >$$

- 29 The ground state energy shift due to a non-zero perturbing potential is zero in first order perturbation. Which of the following is correct?
 - (a) $\Delta E > 0$ in second order perturbation
 - (b) $\Delta E = 0$ in second order perturbation
 - (c) $\Delta E < 0$ in second order perturbation
 - (d) $\Delta E = 0$ in all orders of perturbation
- 30 The parity of wave function ψ is associated with which of the following transformation?
 - (a) Space inversion
 - (b) Space translation
 - (c) Space rotation
 - (d) Space exchange of two particles
- 31 What is the degeneracy of the third excited state for a particle in 3dimensional isotropic Harmonic oscillator potential. (Ground state is not an excited state):
 - (a) 10

(b) 6

(c) 4

- (d) 3
- 32 The eigenvalues of a Hermitian operator must be:
 - (a) Real

- (b) Complex
- (c) Positive
- (d) Negative
- 33 In quantum mechanics three-dimensional normalized wave function $\psi(r)$ of a particle :
 - (a) is dimensionless
 - (b) has dimension of (energy *x* time)
 - (c) has dimension of energy
 - (d) has dimension of (length) $-^{-3/2}$
- 34 Particles with energy $E > V_0$ are incident from side with negative x, on step potential V = 0 for x < 0 and $V = V_0$ for x > 0.

The wave function is given by:

$$\psi(x) = Ae^{ik_1x} + Be^{ik_1x} x < 0$$

= $Ce^{ik_2x} + De^{-ik_2x} x > 0$

Then:

- (a) Reflection coefficient R = 0
- (b) Transmission coefficientT = $\frac{C^*C}{A^*A}$
- (c) Transmission coefficient $T = \frac{C^*C + D^*D}{A^*A + B^*B}$
- (d) Reflection coefficient = $\frac{B^* B}{A^* A}$
- 35 A constant volume ideal gas thermometer is in thermal equilibrium with a system A at temperature T_A and measures a pressure p_A . When the same thermometer is brought in thermal equilibrium with another system B, the measured pressure is $2p_A$. The temperature of the system B is :
 - (a) T_A

(b) $T_A/2$

(c) 2 T_A

(d) $T_A/\sqrt{2}$

- 36 Consider a process in which the volume of the system remains constant and the system is in thermal equilibrium with a heat reservoir at temperature T. Such a process is called:
 - (a) isothermal
 - (b) isobaric isothermal
 - (c) isochoric adiabatic
 - (d) isochoric isothermal
- 37 A Carnot engine operates between 600 K and 300 K with ideal gas as working medium. Its maximum efficiency will be:
 - (a) 0.5

(b) 0.8

(c) 1.2

- (d) 1
- 38 A gaseous sytem of volume *V* is at pressure *p* and temperature T. A small change ΔV is made in the volume. If ΔQ is the change in the heat content of the system, the change Δu in the internal energy is given by:
 - (a) $\Delta u = p\Delta V + \Delta$
- (b) $\Delta u = p\Delta V \Delta Q$
- (c) $\Delta u = -p\Delta V + \Delta Q$ (d) $\Delta u = -p\Delta V \Delta Q$
- 39 The chemical potential, in the classical limit is:
 - (a) zero

- (b) negative
- (c) positive
- (d) complex quantity
- 40 The partition function z_{ij} of two independent systems *i* and *j* in thermal equilibrium with a reservoir at temperature T is given by:
 - (a) $z_{ij} = z_i \times z_j$
- (b) $z_{ij} = z_i + z_j$
- (c) $z_{ij} = z_i^{z_j}$ (d) $z_{ij} = z_i/z_j$
- 41 Considering the Maxwell-Boltzmann distribution of speeds of molecules, the root mean square

speed of a molecular of mass m, at temperature T

(c)0

- (d) $\sqrt{\frac{2k T}{m}}$
- 42 The number of distinct arrangements of 6 Bosons placed in 3 energy states are:
 - (a) 84

(b) 28

(c) 56

- (d) 3^6
- 43 TTL output of the function generator is:
 - (a) Triangular wave
 - (b) Sine wave
 - (c) Square wave
 - (d) Triangular, sine and square waves
- 44 In an experiment, the voltage across a $10k\Omega$ resistor is applied to CRO. The screen shows a sinusoidal signal of total vertical occupancy 3 cm and total horizontal occupancy of 2 cm. The frontpanel controls of V/ div and time/div are on 2 V/div and 2 ms/ div respectively. Calculate the rms value of the voltage across the resistor:
 - (a) +3 V

- (b) -2.1213 V
- (c) +2.1213 V
- (d) 3 V
- 45 When two rotary pumps are connected in parallel to a vacuum chamber, the ultimate pressure can be achieved is closest to:
 - (a) 1×10^{-3} torr
- (b) 0.1×10^{-3} torr
- (c) 1×10^{-5} torr (d) 1×10^{-6} torr

- 46 Noise due to several amplifiers connected in series is :
 - (a) Additive
- (b) Subtractive
- (c) Multiplicative
- (d) Logarithmic
- 47 In which counter for the detection of the thermal neutrons boron is introduced in the form of BF_3 ?

 (a) Ionisation chamber
 - (b) Proportional counter
 - (c) G.M. counter
 - (d) Scintillation counter
- 48 In the Millikan's experiments, an oil drop carries four electronic charges and has a mass of 1.8×10^{-12} g. It is held almost at rest between two horizontal charged plates. 1.8 cm apart. What voltage must there be between the two charged plates?
 - (a) 250 V
- (b) 300 V

- (c) 496 V
- (d) 500 V
- 49 Metallic sodium has a bcc structure.

 Its X-ray diffraction pattern does not contain lines corresponding to Bragg plane:
 - (a) (1 1 0)
- (b) (2 2 2)
- $(c)(2 \ 0 \ 0)$
- (d)(2,2,1)
- 50 The movable mirror of Michelson's interferometer is moved through a distance of 0.02603 mm. The number of fringes shifted across the crosswire of a eyepiece of the telescope, if a wavelength of light 5200Å used is:
 - (a) 100

(b) 200

(c) 300

(d) 400.

Answer Key					
1. None	2. c	3. d	4. a	5. d	
6. *	7. a	8. b	9. a	10. d	
11. b	12. a	13. c	14. a	15. d	
16. b	17. b	18. c	19. c	20. a	
21.	22. d	23. c	24. d	25. a	
26. a	27. c	28. c	29. c	30. a	
31. d	32. a	33. *	34. b	35. c	
36. c	37. a	38.	39. b	40. a	
41. a	42. c	43. c	44.	45. a	
46. a	47. b	48. c	49. d	50. a	