November 2011 Paper II

- 1 Which of the following corresponds to \sqrt{I} , where $i = \sqrt{-1}$:
 - (a) $\frac{1}{\sqrt{2}}(1+i)$
- (b) $\frac{1}{\sqrt{2}}(1-i)$

(c) -1

- (d) 1
- 2 The eigenvalues of the matrix

$$\begin{bmatrix} i & -i & 0 \\ 0 & 1 & i \\ 0 & 0 & -i \end{bmatrix}$$

are:

- (a) i, -i, 0
- (b) i, i^2, i^3
- (c) 1,0,-1
- (d) 1, i, -i
- 3 Which of the following is a valid solution of the differential equation?

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0$$
?

- (a) $x^2 y^2$
- (b) x^2y^2
- (c) $x^2 + y^2$
- (d) $x^4 y^4$
- 4 For the Legendre differential equation

$$(1 - x2)y'' - 2xy' + n(n + 1)y = 0$$

which of the following is an ordinary point?

(a) x = 1

- (b) x = 0
- (c) x = -1
- (d) $x = \infty$

5 If

$$\overline{A} \cdot (\overline{B} \times \overline{C}) = 0$$

in 3-dimensional space, then:

- (a) \overline{A} , \overline{B} , \overline{C} are co-planer
- (b) $\overline{\boldsymbol{A}}$ is a null vector
- (c) \overline{A} , \overline{B} , \overline{C} span the whole 3-d space
- (d) $\overline{B} = 0$
- 6 The dimension of the subspace spanned by the real vectors:

$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

(c) 4

(a) 2

(d) 5

7
$$f(x) = \begin{cases} 1 & 0 < x < \pi \\ 0 & -\pi < x < 0 \end{cases}$$

when f(x) is represented by corresponding Fourier series, then the value of Fourier series at x=0 is :

(a) 1

(b) 0

(c) $\frac{1}{\sqrt{2}}$

 $(d)\frac{1}{2}$

8 The Laplace transform of f(t) is F(s), then the Laplace transform of dfldt is:

- (a) d F/ds
- (b) $\int_0^\infty F(s-t)f(t)dt$
- (c) s F(s) f(0)
- (d) $F(s)e^{-s}$

9 The ground state energy is always:

- (a) suppressed due to the first order perturbation
- (b) elevated due to the first order perturbation

(c) suppressed due to the second order perturbation

- (d) elevated due to the second order perturbation
- 10 For 3-dimensional square well potential well potential in quantum mechanics $(v = -v_0 \text{ for } 0 < r < a \text{ and } v = 0 \text{ for } r > a)$

(a) the bound state exists only if the potential is sufficiently deep

- (b) there always exists at least one bound state
- (c) there are always at least three bound states

- (d) the bound state wave function has property $\psi(r=0)=0 \label{eq:psi}$
- 11 Which of the following is an eigenfunction of linear momentum operator $\frac{\hbar}{i} \frac{\partial}{\partial x}$, such that it describes a particle moving in free space in the direction of +ve x-axis with no uncertainty in the linear momentum?
 - (a) cos kx
- (b) sin kx

(c) e^{-kx}

- (d) e^{ikx}
- 12 A transition, in which one photon is radiated by the electron in a hydrogen atom, when the electron wave function changes from Ψ_1 to Ψ_2 ; is forbidden if Ψ_1 and Ψ_2 :
 - (a) have opposite parity
 - (b) are both spherically symmetric
 - (c) are orthogonal to one another
 - (d) are zero at the center of the atom
- 13 A particle of mass m confined to an infinitely deep square well potential:

$$V(x) = \infty \text{ for } x \le 0, x > a$$

= 0 for 0 < x < a

has eigenfunction : $\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$.

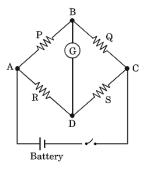
The expectation value of the momentum of the particle is:

(a)zero

- (b) $\frac{n\pi\hbar}{a}$
- (c) $\frac{2n\pi\hbar}{a}$
- (d) $\frac{\hbar}{a}$
- 14 A system of mass m in one dimension is in a state described by :

 $\psi(x,t) = A \exp \{(ipx - iEt)/\hbar\} + B \exp \{(-ipx - iEt)/\hbar\}$ where A and B are complex numbers; p

and E are real. The probability current density is given by :


- (a) $(|A|^2 + |B|^2)p/m$
- (b) $(|A|^2 |B|^2)p/m$
- (c) p/m
- (d) (|A| |B|)p/m
- 15 The wave function for identical fermions is antisymmetric under particle interchange. Which of the following is a consequence of this property ?
 - (a) Pauli's exclusion principle
 - (b) Heisenberg's uncertainty principle
 - (c) Bose-Einstein condensation
 - (d) Bohr correspondence principle
- 16 $\vec{L} \times \vec{L}$ in quantum mechanics is equal to :
 - (a) 0

- (b) L²
- (c) $l(l+1)\hbar^2$
- (d) $i\hbar \vec{L}$
- 17 The spacing between (111) planes of a cubic system of lattice parameter 'a ' is:
 - (a) $\frac{\sqrt{3}}{2}$ a
- (b) $\frac{a}{\sqrt{3}}$

(c) √3a

- (d) $\frac{2a}{\sqrt{3}}$
- 18 If I_G , I_K and I_P are grid current, cathode current and plate current respectively in ionization types of vacuum gauges, then the pressure (P) measured will be:
 - (a) $P \propto I_G/I_P$
- (b) $P \propto I_P/I_G$
- (c) $P \propto I_K/I_G$
- (d) $P \propto I_P/I_K$

19 In a Wheatstone bridge the sensitivity is maximum when:

- (a) P, Q, R, S are of small order
- (b) P, Q are large, R, S are small
- (c) P, R are large, Q, S are small
- (d) Q, S are large P, R are small
- 20 The movable mirror of Michelson's interferometer is moved through a distance of 0.02603 mm. The number of fringes shifted across the cross-wire of eyepiece of the telescope if a wavelength of 5206Å is used is:
 - (a) 200

(b) 300

(c) 100

- (d) 400
- 21 An analog transducer has a range 0 10 V. The bits of an A/D converter if the resolution is 5mV are:
 - (a) 9

(b) 10

(c) 11

- (d) 12
- 22 In a Michelson's interferometer 200 fringes cross the field of view when the movable mirror is displaced through 0.0589 mm. The wavelength of monochromatic light used is:
 - (a) 5890×10^{-8} cm
- (b) 5895×10^{-8} cm
- (c) 5925×10^{-8} cm
- (d) 5950×10^{-8} cm In vacuum measurement, the gauge factor is

given by:

(b)
$$\frac{\frac{\Delta R}{R}}{\frac{\Delta L}{L}}$$

(c)
$$\frac{\frac{\Delta R}{R}}{\frac{\Delta D}{D}}$$

(d)
$$\frac{\Delta R/R}{\Delta P/P}$$

where L, D, P and R are respectively length, diameter, resistivity and resistance of strain.

- 23 The life time of μ -meson is 2×10^{-6} sec. A beam of μ mesons emerges from a cyclotron with velocity 0.8C, where C is the speed of light in free space. What would be the mean life of the μ mesons in this beam as observed in the laboratory?
 - (a) 3×10^{-6} sec
- (b) $3 \times 10^{-7} \text{sec}$
- (c) $6 \times 10^{-6} \text{sec}$
- (d) $6 \times 10^{-8} \text{sec}$
- 24 A pulley of negligible weight is suspended by a spring balance. Weights of 1 kg and 5 kg are attached to the opposite ends of a string passing over the pulley and move with acceleration because of gravity. During their motion, the spring balance will read a weight:
 - (a) 6 kg
 - (b) Less than 6 kg
 - (c) Greater than 6 kg
 - (d) Reading depends on the stiffness of the spring
- 25 A bullet is fired from a rifle. If the rifle were allowed to recoil freely (i.e. without being restrained by the person's shoulder) its kinetic energy as a result of recoil would be:
 - (a) Equal to
 - (b) Less than
 - (c) Greater than
 - (d) Not related to that of the bullet.

- 26 The 0 10 V A/D converter has to have a resolution of 0.025 per cent. The r.m.s. value of quantization error is:
 - (a) 176µV
- (b) 705µV
- (c) $352\mu V$
- (d) $1410 \mu V$
- 27 The top is spinning about its axis in the sense indicated by the arrow. The lower end of the top pivots on a table. Then, as seen from above looking down apon it:

- (a) top will wobble in a vertical plane
- (b) top will process clockwise
- (c) top will process counterclockwise
- (d) top will periodically change its sense of precession
- 29 Masses m and 3m are attached to the two ends of a spring of spring constant k. Its period of oscillation is:

(a)
$$2\pi \sqrt{\frac{3m}{k}}$$

(b)
$$2\pi \sqrt{\frac{m}{3k}}$$

(c)
$$\pi \sqrt{\frac{m}{3k}}$$

(d)
$$\pi \sqrt{\frac{3m}{k}}$$

30 The mutual potential energy V of two particles depends on their mutual distance r as follows,

$$V = \frac{a}{r^2} - \frac{b}{r}$$

where a > 0 and b > 0 are constants. For what separation r are the particles in static equilibrium

(a)
$$r = \frac{a}{2b}$$

(b)
$$r = \frac{a}{a + br}$$

(c)
$$r = \frac{ab}{(a+br)^2}$$
 (d) $r = \frac{2a}{b}$

(d)
$$r = \frac{2a}{b}$$

- 31 Suppose that the radius of the earth were to shrink by 1% its mass remaining the same. Then the acceleration due to gravity g on the earth's surface:
 - (a) increases by 2%
- (b) increases by 1%
- (c) decreases by 1%
- (d) decreases by 2%
- 32 Continuity equation in electromagnetism is equivalent to:
 - (a) Quantization of energy
 - (b) Quantization of charge
 - (c) Conservation of energy
 - (d) Conservation of charge
- 33 A current carrying straight wire is kept along the axis perpendicular to the plane of a current carrying circular loop. The straight wire:
 - (a) will exert an inward force on the loop
 - (b) will exert an outward force on the loop
 - (c) will exert a force on the loop but the direction of the force cannot be determined as the directions of the currents are not specified
 - (d) will not exert any force on the loop
- 34 A conducting rod of length l is moved with a constant velocity \bar{v} in the uniform magnetic field B. In which of the following cases, a potential difference will appear across the two ends of the rod?
 - (a) \bar{v}

(b) $\bar{v} \bar{B}$

(c) $\overline{l} \overline{B}$

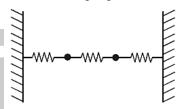
- (d) None of the above
- 35 Electric charges are distributed in a small volume of sphere of radius 1 cm. The flux of the electric

field through a spherical surface of radius 10 cm			capacitances in the two ca	uses $\frac{C_S}{}=$	
surrounding the total charge is 20Vm. The flux					
through a concentric spherical surface of radius			(a) $\frac{1}{15}$	(b) $\frac{1}{3}$	
20 cm is :			15	3	
(a) 5Vm	(b) 20Vm			2	
(1) 1 1 11	(3) = 3 + 3 = 3		(c)1	(d) $\frac{3}{1}$	
(c) 80Vm	(d) 0Vm			1	
(c) 60 v III	(u) ovin				
		40	For motion of 2 particles i	moving in 2 dimensional	
An electric dipole is placed in a uniform electric			space, the phase space red	quired to represent the	
field. The net electric force on the dipole :			state of the particles must	have at least:	
(a) is always zero			(a) 8 dimensions	(b) 6 dimensions	
(b) depends only on the st	rength of the dipole		(c) 4 dimensions	(d) 16 dimensions	
(c) depends only on the orientation of the dipole		41 The mean energy of a classical ideal gas having N monatomic particles at a temperature T will be:			
					(d) depends on both the strength and the
orientation of the dipole			(a) $\frac{1}{2}$ NkT	(b) NKT	
Two resistors R and 2R are connected in parallel			(c) 2NkT	$(d)\frac{3}{2}NkT$	
in an electric circuit. The t				. , , ,	
		42			
developed in them are Q_1 and Q_2 respectively,		42 Consider a system of 4 spins with spin $S = \frac{1}{2}$ and			
then $\frac{Q_1}{Q_2} = \dots$			magnetic moment μ each. It is placed in an		
(a) $\frac{1}{2}$	(b) 2		external magnetic field H.	The magnetic moments	
$\frac{(a)}{2}$	(b) $\frac{2}{1}$		can either be parallel or a	ntiparallel to the	
			magnetic field. Consider a	macrostate of the	
(c) $\frac{1}{4}$	(d) $\frac{4}{1}$		system with energy $-2\mu H$	I. Using the postulate of	
4	1		equal a priori probability,		
			finding the system with th		
Two point charges are placed in air at a certain			-2μ is given by :	O .	
distance apart. If a slab of	mica is placed in the		(a) 1/16	(b) 1/4	
region between them, then	n which of the following		(1) = 1 = 1	(-) -/ -	
will happen?			(c) 1/8	(d) ½	
(a) The force between the charges increases			(0) 1/0	(d) /2	
		1.2	The volume of a perfect ga	ne ie doublad tha	
(b) The force between the charges decreases		43	=		
			number N of atoms and the energy being held constant. The change in entropy will be :		
(c) The force between the	charges remains		-	= -	
unchanged			(a) Nkl n V	(b) 2Nkl n V	
O - 				1	
(d) Both the point charges move to infinity			(c) Nkl n 2	$(d)^{\frac{1}{2}}$ Nkl n(2 V)	
(a) both the point charges	, move to mining			-	
Three capacitors of capacitances 3µF, 9µF and		44	Consider N particles with	spin angular	
18μF are connected once in series and another			momentum S each. Each s		
Tour are connected once in series and another		I		•	

projections along the axis of quantization. The

time in parallel. The ratio of equivalent

total number of microstates of the system will be


- (a) N(2S + 1)
- (b) $(2 S + 1)^N$

- (c) N^{2S+1}
- (d) N(2S+1)!
- 45 In a process, a thermally isolated system goes over to one microstate to another, then the entropy tends to:
 - (a) Increase only
 - (b) Decrease only
 - (c) Increase or remain constant
 - (d) Zero
- 46 For the Fermi-Dirac distribution, the probability of occupation of a single particle energy level is equal to:
 - (a) the average occupancy of that level
 - (b) one
 - (c) $\frac{1}{2}$ the average occupancy of that level
 - (d) 0
- 47 Consider degenerate Fermi gas at T = 0 with the Fermi energy E_F. The mean energy per particle will be:
 - (a) $\frac{3}{5}E_{F}$
- (b) $\frac{1}{2}E_{F}$ (d) $\frac{5}{3}E_{F}$
- (c) $\frac{2}{3}E_{F}$

- 48 The equation of state of an ideal gas in the nonrelativistic state is given by:
 - (a) PV = $\frac{2}{3}$ U
- (b) $PV = \frac{2}{5}U$
- (c) PV = $\frac{1}{3}$ U
- (d) PV = $\frac{5}{2}$ U

- 49 Electrostatic potential V at a distance r from the ideal dipole follows the relation:
 - (a)V \propto r

- (b) $V \propto \frac{1}{r}$
- (c) $V \propto \frac{1}{r^2}$
- (d) $V \propto r^2$
- 50 Two particles of equal mass are connected by springs as shown and are free to execute longitudinal one-dimensional oscillations. Then the vibrations superposition of:

- (a) Two normal modes one with out of phase and The other with in phase vibrations along the springs (longitudinal)
- (b) Two normal modes one out of phase and one in phase, transverse to the springs
- (c) Three longitudinal normal modes
- (d) Three transverse normal modes.

Answer Key						
1. a	2. d	3. a	4. b	5. a		
6.	7. d	8. c	9. c	10. b		
11. d	12. c	13. a	14. b	15. a		
16. a	17. b	18. b	19.	20. c		
21. c	22. a	23. b	24. a	25. b		
26. b	27.	28. b	29. c	30. d		
31. a	32. d	33. d	34. d	35. c		
36. a	37. b	38. b	39. a	40. a		
41. d	42. a	43. c	44. b	45. c		
46. a	47.	48. c	49. c	50. a		