February 2008 Paper -II

1. The value of the following continued fractions

$$3 - \underline{1}$$

$$3 - \underline{1}$$

$$3 - \cdots \dots$$

(a)
$$\frac{[3+\sqrt{5}]}{2}$$
 (b) $\frac{[3-\sqrt{5}]}{2}$

(b)
$$\frac{[3-\sqrt{5}]}{2}$$

(c)
$$\frac{\left[5+\sqrt{3}\right]}{2}$$

(d)
$$\frac{[5-\sqrt{3}]}{2}$$

- 2. For $0 \le x < \infty$, the following is true (a) $\sin hx < e^x < \cos hx$
 - (b) $\sin hx < \cos hx < e^x$
 - (c) $e^x < \cos hx < \sin hx$
 - (d) $e^x < \sin hx < \cos hx$
- 3. Find the constant 'a' for which the vector $\vec{A} = (x + 3y) \vec{i} + (y - 2z) \vec{j} + (x + az) \vec{k}$ Solenoid.
 - (a) 1

(c) - 1

(b) 2

- (d) 2
- 4. The Rank of the matrix:

$$\begin{bmatrix} 4 & 3 & 2 & 1 \\ 2 & -1 & 5 & 4 \\ 6 & 2 & 7 & 5 \\ 0 & 5 & -8 & -7 \end{bmatrix}$$

(c) 3

(b) 2

- (d) 4
- 5. A hermitian matrix of order n satisfies the property $A^4 = I$ where I is the unit matrix of order n. The eigenvalues of A can only be of the form
 - (a) ± 1
- (b) $\pm 1, \pm i$
- (c) nth Root of unity (d) Any real number
- 6. The differential equation $(x^3 + 3xy^2) dx +$ $(3x^2t + y^3)dy = 0$ has the solution, with arbitrary constant C,

(a)
$$x^4 + 6x^2y^2 + y^4 = 0$$

(b)
$$x^4 - 6x^2y^2 + y^4 = 0$$

(c)
$$x^4 + 6x^3y + 6xy^3 + y^4 = 0$$

(d)
$$x^4 + y^4 = 0$$

- 7. Consider a function $f(x) = 3 \sin x$ and $f(x + \pi) =$ f(x) for all x. The function will have a Fourier series with
 - (a) Sine terms and period π
 - (b) Cosine terms and period π
 - (c) Sine terms of period 2π
 - (d) Sine and cosine terms of period 2π
- 8. The value of \sqrt{i} Where $i = -\sqrt{1}$

(a)
$$\pm \frac{[1+i]}{\sqrt{2}}$$

(b)
$$\pm \frac{[1-i]}{\sqrt{2}}$$

(c)
$$\frac{[1+i]}{\sqrt{2}}$$

- (d) $\frac{[1-i]}{\sqrt{2}}$
- 9. Action is defined as

(a)
$$\int_{t_1}^{t_2} T dt$$

(b)
$$\int_{t_1}^{t_2} H dt$$

$$(c)\int_{t_1}^{t_2} (p\dot{q} + H) dt$$

$$(d) \int_{t_1}^{t_2} L dt$$

- 10. For a geostationary satellite which of the statement is correct.
 - (a) Satellite completes one revolution in 24 hours from east towards west.
 - (b) Satellite completes one revolution in 24 hours from west towards east.
 - (c) Satellite completes one revolution in one year from east towards west.

- (d) Satellite completes one revolution in one year from west towards east.
- 11. Which of the relations in Classical Mechanics is wrong?

 - (a) $L = p_i \dot{p}_i H$ (b) $\dot{p}_i = -\frac{\partial H}{\partial g_i}$

 - (c) $\dot{q}_i = -\frac{\partial H}{\partial p_i}$ (d) $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) \frac{\partial L}{\partial q_i} = 0$
- 12. Isotropy of medium is related to the conservation of
 - (a) Energy
 - (b) Mass
 - (c) Linear momentum
 - (d) Angular momentum
- 13. Reduced mass m_e, of a system Comprising one electron of mass m_c and one proton of mass m_p iS nearly
 - $(a) m_n$

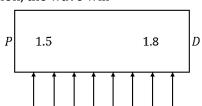
- (b) m_c
- (c) $m_e + m_p$
- (d) $m_e m_p$
- 14. A particle of mass m is Constrained to move along the X- axis, in a potential given by V(x) = a +bx + cx^2 , where c is a positive constant. If the particle is disturbed slightly from its equilibrium position, then it
 - (a) Performs SHM with period $2\pi \sqrt{\frac{m}{2C}}$
 - (b) Performs SHM with period $2\pi \sqrt{\frac{bm}{ac}}$
 - (c) Performs SHM with period $2\pi \sqrt{\frac{2c}{m}}$
 - (d) Does not perform SHM

- 15. If the angular frequency ω and wave number k are related through the expression $\omega = \sin k \ln k$, the group velocity at $k = \frac{\pi}{2}$ is
 - (a) $\frac{2}{\pi} + \ln \frac{2}{\pi}$ (b) $\frac{2}{\pi} \ln \frac{2}{\pi}$
 - (c) $\ln \frac{\pi}{2}$
- 16. Kinetic energy of a relativistic electron moving with velocity v is where mothe rest mass of electron and c the speed of light is. m₀V

(a)
$$\frac{1}{2} \left(\frac{m_0 V^2}{1 - V^2 / C^2} \right)$$
 (b) $m_0 C^2$

(c)
$$\left(\frac{m_0 V^2}{1 - V^2/C^2}\right) m_0 C^2$$
 (d) $\frac{1}{2} \left(\frac{m_0 C^2}{1 - V^2/C^2}\right)$

(d)
$$\frac{1}{2} \left(\frac{m_0 C^2}{1 - V^2 / C^2} \right)$$


- 17. A point charge q is brought at a distance 2a from the center of an isolated, uncharged conducting sphere of radius a. The potential of the sphere is raised by
 - (a) $\frac{q^2}{8\pi\epsilon_0 a}$
- (b) $\frac{q^2}{4\pi\epsilon_0 a}$
- (c) $\frac{q^2}{2\pi\epsilon_0 a}$
- (d) Zero
- 18. Point charges q each are placed at two neighbouring corners of a Square and charges -q each are placed at the remaining corners This system of charges has monopole, dipole and quadrupole as given here
 - (a) Zero monopole, dipole and quadrupole
 - (b) Non-zero dipole, no monopole and quadrupole
 - (c) Zero monopole, non-zero" dipole and Quadrupole
 - (d) All the three non-zero

- 19. The characteristic impedance of an air filled loss less coaxial transmission line with radii of 10 and 5cm for outer and inner conductor is
 - (a) 41.1Ω
- (b) 277Ω

- (c) 50Ω
- (d) 84.4Ω
- 20. A small bar magnet is placed with its length parallel to a magnetic field and its north-south direction opposite to the uniform magnetic field. The magnetic field will be zero at (a) two points in the end-on position of the
 - magnet
 - (b) Two points on broad-side position of the magnet
 - (c) All points on a certain circle in the meridian plane of the magnet
 - (d) Nowhere
- 21. A plane electromagnetic wave traveling in a medium is described by $E = 100 \cos (6 \times 10^8 t -$ 4x) V/m where x is in meters and t in seconds. The dielectric constant of the medium must be
 - (a) 1.5

(b) 2.0

- (c) 2.4
- (d) 4.0
- 22. An optical plane wave is incident normally on one surface of a rectangular glass slab whose refractive index increases from 1.5 to 1.8 from P (left) to Q (right), as shown in the Figure. After refraction, the wave will

- (a) Be totally reflected
- (b) Be deviated towards side P

- (c) Be levitated towards side Q
- (d) Go undevoted
- 23. Consider the following for the speed of electromagnetic wave in a doubly Refracting material
 - (i) It takes two discrete values v₁and v₂
 - (ii) It takes all values between v₁ and v₂
 - (iii) Both v₁ and v₂ are less than c.
 - (iv) $v_1 < c$ and $v_2 > c$ Which are following combinations are correct?
 - (a) (i) and (ii) only
- (b) (i) and (iv) only
- (c) (i) only
- (d) (i) and (ii) only
- 24. When an electromagnetic wave having wavelength 20 cm in free air enters a perfect dielectric, its velocity is seen to be 1.35 \times $\frac{10^8 \text{m}}{\text{s}}$. m/s. Its wavelength in the dielectric must be
 - (a) 5 cm

- (b) 9 cm
- (c) 27 cm
- (d) 44 cm
- 25. A rectangular waveguide has width a and heightb. EM waves of wavelength χ can propagate through it if
 - $(a)\lambda > 2a$
- (b) $\lambda > a$
- $(c)\lambda > 2b$
- $(d)\lambda > 2b$
- 26. A relativistic particle has rest mass m_0 and kinetic energy K The wavelength of the Corresponding matter-wave is
 - (a) $\frac{h}{\sqrt{2m_0K}}$
- (b) $\frac{hc}{\sqrt{K + 2m_0 K}}$
- $(c) \frac{hc}{\sqrt{k(K+2m_0KC^2)}} \qquad (d) \frac{hc}{\sqrt{K(K-2m_0KC^2)}}$
- 27. In the time dependent Schrodinger equation the wav function $\psi(\overline{r}, t)$ is

	(a) Always complex	3	32. An atomic system is perturbed $H'^{(r,t)} = 2 H'(r) \cos(\omega t)$ by The probability $P_{n\to k}(t)$ when plotted as a function of $\omega_{kn} - \omega$ show sinusoidal oscillations The area of the main peak is			
	(b) Always real					
	(c) Always imaginary			tional to	(b) t ¹	
	(d) Can be real as well as imaginary		(c) t ⁰		(d) t^{-2}	
28.	In the Bohr atomic model out of the to kinetic energy K and potential energy		33. In a central field a particle with wavenumber k is scattered. It's scattering amplitude in the forward directions $f(0)$. the product of the total cross section σ and k is equal to (a) $4\pi f(0)$			
	(a) Only E varies in a discrete Manner					
	(b) E and K vary in discrete Manners					
	(c) E and V vary in discrete Manners		(b) 4 π	imaginary part of	f(0)	
	(d) All the three E, K and V vary in disc Manners	crete	(c) 2 π	f(0)		
29.	. At $t=0$ the position of a neutron is known with accuracy Δx_0 . Its uncertainty in its position at		(d) 2 π	Real part of f(0		
	time t is		34. For a system having energy E and entropy S at temperatureT, the term (E - TS) represents			
	(a) $\frac{\hbar t}{2 \Delta x_0}$ (b) $\frac{\hbar^2 t}{2 \Delta x_0}$		(a) Pres		(b) Enthalpy	
	(c) $\frac{\hbar t^2}{2 \Delta x_0 m_0}$ (d) $\frac{\hbar}{2 m_0 \Delta x_0}$	<u> </u>	(c) Heli	mholtz free energy	(d) Gibbs free energy	
	Where m ₀ is rest mass particle?		35. Gibb's potential is given by			
30.	The eigenvalues of a Hermitian Operation	tor are	(a) U		(b) U + PV	
	(a) Always real		(c) U –	TS	(d) $U - TS + PV$	
	(b) Always imaginary		6. A simp	le pendulum of len	gth l and mass of the	
	(c) Always complex		bob makes Oscillations about its equilibrium position taken as the origin of the coordinate			
	(d) Can be real as well as imaginary		system. The phase space trajectory of the pendulum is			
31.	. Two angular momenta $j_1 = 1$ and $j_2 = \frac{3}{2}$ are		(a) An e	ellipse in the positi	ive half of -coordinate	
	coupled. The total number of m, values	-	(b) A rectangle			
	(a) 12 (b) 9		(c) An ellipse in the positive half of y- coordina			
	(c) 4 (d) 3		(C) All (ampse iii uie posiu	ve han of y- coordinates	
	` '			ıll ellipse with maj plitude of Oscillatio	or axis equal to twice on	
		•				

37.	Mean tree path tor a typical ga at room temperature (300 K) and atmospheric pressure $(10^6 \text{ dynescm}^{-2})$. Is of the order of		(d) Gas therm	ometer	
	(a) 1 cm	(b) 10^{-5} cm	43. Normal pn jun (a) Forward l	nction photo diode detector work in biased region	
38.	(c) 10^{-8} cm (d) 10^{2} cm . A system of N particles in 3- dimensions has a phase space of Dimension		(b) Reversed	biased region	
	(a) 3N	(b) N	(c) Exponenti	ial region	
	(c) 6N	(d) 2N	(d) Breakdow	vn region	
39.	. There are two particles distributed in three quantum States. The number of microstates		be Varied	of a waveform in Oscilloscope can	
	according to Maxwell-Boltzmann. Bose Einstein and Femi – Dirac Statistics will be a 9,6,3		(a)Varying the electron gun	e accelerating Voltage in the	
	(a) 9,6,3	(b) 6,3,9	(b)Varying the voltage acres the X-Y plates (c)Varying the frequency of the ne base		
	(c) 3,6,9	(d) 6,9,3			
40.	The paramagnetic susceptibility for an ideal Femi				
	gas is		(d)Varying the current through the focusing		
	(a) Independent of the Temperature		lenses		
	(b) Decreases with temperature		45. A voltage Source has voltage V with 10k ohm internal Resistance. The voltage Is Assured by a		
	(c) Increases quadratica	lly with temperature	voltmeter having 90 k ohm resistance. The error involved in the measurement is		
	(d) Increase linearly wit	h temperature	(a) 10 %	(b) 1%	
41.	The density of the states one two and three dime	for an ideal Fermi gas in	(c) 0.1%	(d) 0.0196	
	energy as follows	ision depend on the	46. The loading ef	ffect of a voltmeter be less when it	
		a >1/ -0 -1/	has	incet of a volumeter be less when it	
	(a) $E^{1/2}$ For all	(b) $E^{-1/2}$, E^0 , $E^{1/2}$	(a) Low input impendence (b) High input impedance		
	(c) E ² for all	(d) $E^{1/2}$, E, $E^{3/2}$			
42.	. The most stable device measure a temperature of around 1800^{0} c. is		(c) when zero of the scale is in the middle		
	(a) Platinum Resistance Thermocouple		(d) Deflection is large		
	(b) Thermocouple		47. In Michelson interferometer 200 Fringe are shifted when movable mirror is displaced		
	(c) Radiation pyrometer'				

through $005896 \ mm$. The wavelength of light is then

- (a) $2948 A^0$
- (b) 11792 A⁰
- (c) $2948 A^0$
- (d) $1474 A^0$
- 48. Two interfering beams of light. Each with wavelength λ will produce complete darkness when the path difference between them is
 - (a) $\frac{\lambda}{4}$

(b) $\frac{\lambda}{2}$

(c) λ

- (d) 2λ
- 49. The Unlimited vacuum achievable room an oil rotary pump is limited due to
 - (a) The vapour pressure of the oil
 - (b) The speed of rotation of the rotor
 - (c) The finite gap between the stator and rotor
 - (d) The viscosity of the oil
- 50. Compton effect m X-rays is explained on the basis of
 - (a) Collision between incident photon and electron in atom
 - (b) Collision between photon and neutron
 - (c) Collision between electron and electron
 - (d) Collision between photon and atom

Answer Key								
1. b	2. b	3. d	4. b	5. d				
6. a	7.	8. a	9. d	10. b				
11. c	12.	13.	14. a	15. d				
16. c	17. b	18. c	19. a	20. c				
21. d	22. c	23. d	24. b	25. a				
26. c	27. d	28. d	29. d	30. a				
31. d	32. b	33. b	34. c	35. d				
36. b	37. b	38. c	39. a	40. a				
41. b	42. c	43. a	44. a	45. a				
46. b	47. c	48. b	49. a	50. a				