

CSIR-NET, GATE, ALL SET, JEST, IIT-JAM, BARC

Contact: 8830156303 | 7741947669

❖ NET FEB- 2022

> Part-B

- 1. A particle in one dimension executes oscillatory motion in a potential V(x) = A|x|, where A > 0 is a constant of appropriate dimension. If the time period T of its oscillation depends on the total energy E as E^{α} , then the value of α is
 - (a) $\frac{1}{3}$

(b) $\frac{1}{2}$

(c) $\frac{2}{3}$

- (d) $\frac{3}{4}$
- 2. The equation of motion of a one-dimensional forced harmonic oscillator in the presence of a dissipative force is described by $\frac{d^2x}{dt^2} + 10\frac{dx}{dt} + 16x = 6te^{-8t} + 4t^2e^{-2t}$. The general form of the particular solution, in terms of constants A, B etc, is (a) $t(At^2 + Bt + C)e^{-2t} + (Dt + E)e^{-8t}$ (b) $(At^2 + Bt + C)e^{-2t} + (Dt + E)e^{-8t}$ (c) $t(At^2 + Bt + C)e^{-2t} + t(Dt + E)e^{-8t}$ (d) $(At^2 + Bt + C)e^{-2t} + t(Dt + E)e^{-8t}$
- 3. The vector potential for an almost point like magnetic dipole located at the origin is $A = \frac{\mu \sin \theta}{4\pi r^2} \hat{\phi}$, where (r, θ, ϕ) denote the spherical polar coordinates and $\hat{\phi}$ is the unit vector along ϕ . A particle of mass m and charge q, moving in the equatorial plane of the dipole, starts at time = t = 0 with an initial speed v_0 and an impact parameter b. Its instantaneous speed at the point of closest approach is
 - (a) v_0

(b) 0/0

(c)
$$v_0 + \frac{\mu q}{4\pi m b^2}$$

$$(d)\sqrt{v_0^2 + \left(\frac{\mu q}{4\pi mb^2}\right)^2}$$

- **4.** A particle, thrown with a speed v from the earth's surface, attains a maximum height h (measured from the surface of the earth). If v is half the escape velocity and R denotes the radius of earth, then $\frac{h}{R}$ is
 - (a) $\frac{2}{3}$

(b) $\frac{1}{3}$

(c) $\frac{1}{4}$

- (d) $\frac{1}{2}$
- **5.** A particle of mass $\frac{1GeV}{c^2}$ and its antiparticle, both moving with the same speed v, produce a new particle X of mass $\frac{10GeV}{c^2}$ in a head-on collision. The minimum value of v required for this process is closest to
 - (a) 0.83*c*
- (b) 0.93*c*
- (c) 0.98*c*
- (d) 0.88c
- **6.** The volume of the region common to the interiors of two infinitely long cylinders defined by $x^2 + y^2 = 25$ and $x^2 + 4z^2 = 25$ is best approximated by
 - (a) 225
- (b) 333
- (c) 423
- (d) 625
- 7. The volume integral

$$I = \iiint_V A \cdot (\nabla \times A) d^3 x$$

is over a region V bounded by a surface \sum (an infinitesimal area element being $\hat{\mathbf{n}} ds$, where $\hat{\mathbf{n}}$ is the outward unit normal). If it changes to $I + \Delta I$, when the vector \mathbf{A} is

changed to $\mathbf{A} + \nabla \Lambda$, then ΔI can be expressed as

(a)
$$\iiint_V \nabla \cdot (\nabla \Lambda \times A) d^3 x$$

(b)
$$-\iiint_V \nabla^2 \Lambda d^3 x$$

(c)
$$- \oiint_{\Sigma} (\nabla \Lambda \times \mathbf{A}) \cdot \hat{\mathbf{n}} ds$$

(d)
$$\oiint _{z}\nabla\Lambda$$
. $\hat{\mathbf{n}}ds$

- **8.** A generic 3×3 real matrix A has eigenvalues 0,1 and 6 and I is the 3×3 identity matrix. The quantity/quantities that cannot be determined from this information is/are the
 - (a) eigenvalues $(I + A)^{-1}$
 - (b) eigenvalues of $(I + A^T A)$
 - (c) determinant of $A^T A$
 - (d) rank of A
- 9. A discrete random variable X takes a value from the set $\{-1,0,1,2\}$ with the corresponding probabilities $p(X) = \frac{3}{10}, \frac{2}{10}, \frac{2}{10}$ and $\frac{3}{10}$, respectively. The probability distribution q(Y) = (q(0), q(1), q(4)) of the random variable $Y = X^2$ is

$$(a)\left(\frac{1}{5},\frac{3}{5},\frac{1}{5}\right)$$

(b)
$$\left(\frac{1}{5}, \frac{1}{2}, \frac{3}{10}\right)$$

(c)
$$\left(\frac{2}{5}, \frac{2}{5}, \frac{1}{5}\right)$$

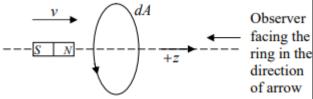
(d)
$$\left(\frac{3}{10}, \frac{3}{10}, \frac{2}{5}\right)$$

- **10.** The components of the electric field, in a region of space devoid of any charge or current sources, are given to be $E_i = a_i + \sum_{j=1,2,3} b_{ij} x_j$, where a_i and b_{ij} are constants independent of the coordinates. The number of independent components of the matrix b_{ij} is
 - (a) 5

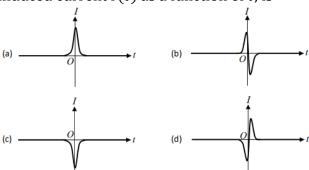
(b) 6

(c) 3

- (d) 4
- **11.** A conducting wire in the shape of a circle lies on the (x, y)-plane with its centre at the origin. A bar magnet moves with a constant velocity towards the wire along the z-axis (as shown in the figure below)



We take t=0 to be the instant at which the midpoint of the magnet is at the centre of the wire loop and the induced current to be positive when it is counter-clockwise as viewed by the observer facing the loop and the incoming magnet. In these conventions, the best schematic representation of the induced current I(t) as a function of t, is



- 12. In an experiment to measure the charge to mass ratio $\frac{e}{m}$ of the electron by Thomson's method, the values of the deflecting electric field and the accelerating potential are 6×10^6 N/C (newton per coulomb) and 150 V, respectively. The magnitude of the magnetic field that leads to zero deflection of the electron beam is closest to
 - (a) 0.6*T*
- (b) 1.2*T*
- (c) 0.4T
- (d) 0.8T
- **13.** A monochromatic source emitting radiation with a certain frequency moves with a velocity v away from a stationary observer A. It is moving towards another observer B (also at rest) along a line joining the two. The frequencies of the radiation recorded by A and B are v_A and v_B , respectively. If the ratio $\frac{v_B}{v_A} = 7$, then the value of $\frac{v}{c}$ is
 - (a) $\frac{1}{2}$

(b) $\frac{1}{4}$

(c) $\frac{3}{4}$

(d) $\frac{\sqrt{3}}{2}$

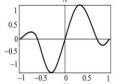
- **14.** The Hamiltonian of a particle of mass m in one-dimension is $H = \frac{1}{2m}p^2 + \lambda |x|^3$, where $\lambda > 0$ is constant. If E_1 and E_2 , respectively, denote the ground state energies of the particle for $\lambda = 1$ and $\lambda = 2$ (in appropriate units) the ratio $\frac{E_2}{E_1}$ is best approximated by
 - (a) 1.260
- (b) 1.414
- (c) 1.516
- (d) 1.320
- **15.** A particle of mass m is in a one dimensional infinite potential well of length L, extending from x=0 to x=L. When it is in the energy eigenstate labelled by n, (n=1,2,3,...) the probability of finding it in the interval $0 \le x \le \frac{L}{8}$ is $\frac{1}{8}$. The minimum value of n for which this is possible is
 - (a) 4

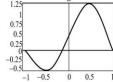
(b) 2

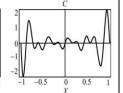
(c) 6

- (d) 8
- **16.** A two-state system evolves under the action of the Hamiltonian $H = E_0|A\rangle\langle A| + (E_0 + \Delta)|B\rangle\langle B|$, where $|A\rangle$ and $|B\rangle$ are its two orthonormal states. These states transform to one another under parity i.e., $P|A\rangle = |B\rangle$ and $P|B\rangle = |A\rangle$. If at time t=0 the system is in a state of definite parity P=1, the earliest time t at which the probability of finding the system in a state of parity P=-1 is one, is
 - (a) $\frac{\pi\hbar}{2\Delta}$

- (b) $\frac{\pi\hbar}{\Lambda}$
- (c) $\frac{2\pi\hbar}{2\Lambda}$
- (d) $\frac{2\pi\hbar}{\Delta}$
- **17.** The figures below depict three different wavefunctions of a particle confined to a one-dimensional box $-1 \le x \le 1$







- The wavefunctions that correspond to the maximum expectation values $|\langle x \rangle|$ (absolute value of the mean position) and $\langle x^2 \rangle$, respectively, are
- (a) B and C
- (b) B and A
- (c) *C* and *B*
- (d) A and B
- 18. Which of the following two physical quantities cannot be measured simultaneously with arbitrary accuracy for the motion of a quantum particle in three dimensions?
 - (a) square of the radial position and zcomponent of angular momentum (r^2 and L_z)
 - (b) x-components of linear and angular momenta (p_x and L_x)
 - (c) y-component of position and z-component of angular momentum (y and L_z)
 - (d) squares of the magnitudes of the linear and angular momenta (p^2 and L^2)
- **19.** The ratio $\frac{C_P}{C_V}$ of the specific heats at constant pressure and volume of a monoatomic ideal gas in two dimensions is
 - (a) $\frac{3}{2}$

- (b) 2
- (c) $\frac{5}{3}$
- (d) $\frac{5}{2}$
- **20.** The volume and temperature of a spherical cavity filled with black body radiation are *V* and 300 K respectively. If it expands adiabatically to a volume 2 V, its temperature will be closest to
 - (a) 150 K
- (b) 300 K
- (c) 250K
- (d) 240K
- **21.** The total number of phonon modes in a solid of volume V is $\int_0^{\omega_D} g(\omega) d\omega = 3N$, where N is the number of primitive cells, ω_3 is the Debye frequency and density of photon modes is

 $g(\omega) = AV\omega^2$ (with A > 0 a constant). If the density of the solid doubles in a phase transition, the Debye temperature θ_D will

- (a) increase by a factor of $2^{2/3}$
- (b) increase by a factor of $2^{1/3}$
- (c) decrease by a factor of $2^{2/3}$
- (d) decrease by a factor of $2^{1/3}$

22. The position of a particle in one dimension changes in discrete steps. With each step it moves to the right, however, the length of the step is drawn from a uniform distribution from the interval $\left[\lambda - \frac{1}{2}w, \lambda + \frac{1}{2}w\right]$, where λ and w are positive constants. If X denotes the distance from the starting point after N steps, the standard deviation $\sqrt{\langle X^2 \rangle - \langle X \rangle^2}$ for large values of N is

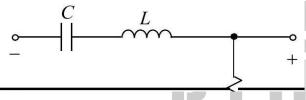
(a)
$$\frac{\lambda}{2} \times \sqrt{N}$$

(b)
$$\frac{\lambda}{2} \times \sqrt{\frac{N}{3}}$$

(c)
$$\frac{w}{2} \times \sqrt{N}$$

(d)
$$\frac{w}{2} \times \sqrt{\frac{N}{3}}$$

23. In the LCR circuit shown below, the resistance $R = 0.05\Omega$, the inductance L = 1H and the capacitance C = 0.04 F.



If the input $v_{\rm in}$ is a square wave of angular frequency 1rad/s the output $v_{\rm out}$ is best approximated by a

- (a) square wave of angular frequency 1rad/s
- (b) sine wave of angular frequency 1rad/s
- (c) square wave of angular frequency 5rad/s
- (d) sine wave of angular frequency $5 \, \text{rad/s}$
- **24.** In an experiment, the velocity of a non-relativistic neutron is determined by measuring the time (~ 50 ns) it takes to travel from the source to the detector kept

at a distance L. Assume that the error in the measurement of L is negligibly small. If we want to estimate the kinetic energy T of the neutron to within 5% accuracy i.e., $\left|\frac{\delta T}{T}\right| \leq 0.05$, the maximum permissible error $|\delta T|$ in measuring the time of flight is nearest to

(a) 1.75 ns

(b) 0.75 ns

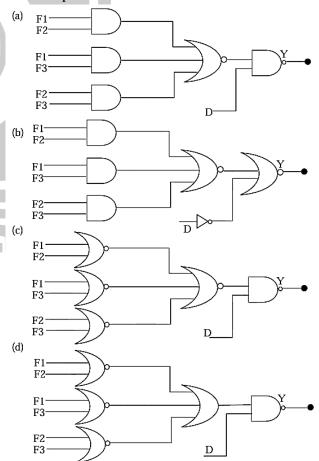
(c) 2.25 ns

(d) 1.25 ns

25. The door of an X - ray machine room is fitted with a sensor D (0 is open and 1 is closed). It is also equipped with three fire sensors F_1 , F_2 and F_3 (each is 0 when disable and 1 when enabled).

The *X*-ray machine can operate only if the door is closed and at least 2 fire sensors are enabled.

The logic circuit to ensure that the machine can be operated is



> PART C

- **26.** If we use the Fourier transform $\phi(x,y) = \int e^{ikx}\phi_k(y)dk$ to solve the partial differential equation $-\frac{\partial^2\phi(x,y)}{\partial y^2} \frac{1}{y^2}\frac{\partial^2\phi(x,y)}{\partial x^2} + \frac{m^2}{y^2}\phi(x,y) = 0$ in the half-plane $\{(x,y): -\infty < x < \infty, 0 < y < \infty\}$ the Fourier modes $\phi_k(y)$ depend on y as y^α and y^β . The values of α and β are
 - (a) $\frac{1}{2} + \sqrt{1 + 4(k^2 + m^2)}$ and $\frac{1}{2}$ $-\sqrt{1 + 4(k^2 + m^2)}$ (b) $1 + \sqrt{1 + 4(k^2 + m^2)}$ and $1 - \sqrt{1 + 4(k^2 + m^2)}$ (c) $\frac{1}{2} + \frac{1}{2}\sqrt{1 + 4(k^2 + m^2)}$ and $\frac{1}{2}$ $-\frac{1}{2}\sqrt{1 + 4(k^2 + m^2)}$ (d) $1 + \frac{1}{2}\sqrt{1 + 4(k^2 + m^2)}$ and 1 $-\frac{1}{2}\sqrt{1 + 4(k^2 + m^2)}$
- **27.** The Newton-Raphson method is to be used to determine the reciprocal of the number x = 4. If we start with the initial guess 0.20 then after the first iteration the reciprocal is (a) 0.23 (b) 0.24
 - (c) 0.25

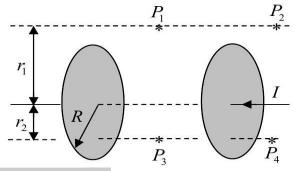
- (d) 0.26
- **28.** The Legendre polynomials $P_n(x)$, n=0,1,2,..., satisfying the orthogonality condition $\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{nm}$ on the interval [-1,+1] may be defined by the Rodrigues formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 1)^n$. The value of the definite integral $\int_{-1}^{1} (4 + 2x 3x^2 + 4x^3) P_3(x) dx$ is
 - (a) $\frac{3}{5}$

(b) $\frac{11}{15}$

(c) $\frac{23}{32}$

- (d) $\frac{16}{35}$
- **29.** A particle of mass m moves in a potential that is $V = \frac{1}{2}m(\omega_1^2x^2 + \omega_2^2y^2 + \omega_3^2z^2)$ in the coordinates of a non-inertial frame F. The

- frame F is rotating with respect to an inertial frame with an angular velocity $\hat{k}\Omega$, where \hat{k} is the unit vector along their common z-axis. The motion of the particle is unstable for all angular frequencies satisfying
- (a) $(\Omega^2 \omega_1^2)(\Omega^2 \omega_2^2) > 0$
- (b) $(\Omega^2 \omega_1^2)(\Omega^2 \omega_2^2) < 0$
- (c) $(\Omega^2 (\omega_1 + \omega_2)^2)(\Omega^2 |\omega_1 \omega_2|^2) > 0$
- (d) $(\Omega^2 (\omega_1 + \omega_2)^2)(\Omega^2 |\omega_1 \omega_2|^2) < 0$
- **30.** The figure below shows an ideal capacitor consisting of two parallel circular plates of radius R. Points P_1 and P_2 are at a transverse distance $r_1 > R$ from the line joining the centres of the plates, while points P_3 and P_4 are at a transverse distance $r_2 < R$.



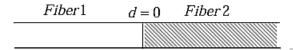
- If B(x) denotes the magnitude of the magnetic fields at these points, which of the following holds while the capacitor is charging?
- (a) $B(P_1) < B(P_2)$ and $B(P_3) < B(P_4)$
- (b) $B(P_1) > B(P_2)$ and $B(P_3) > B(P_4)$
- (c) $B(P_1) = B(P_2)$ and $B(P_3) < B(P_4)$
- (d) $B(P_1) = B(P_2)$ and $B(P_3) > B(P_4)$
- **31.** A perfectly conducting fluid, of permittivity ε and permeability μ , flows with a uniform velocity $\mathcal V$ in the presence of time dependent electric and magnetic fields E and B, respectively. If there is a finite current density in the fluid, then

$$(a)\nabla \times (v \times B) = \frac{\partial B}{\partial t}$$

(b)
$$\nabla \times (v \times B) = -\frac{\partial B}{\partial t}$$

(c) $\nabla \times (v \times B) = \sqrt{\varepsilon \mu} \frac{\partial E}{\partial t}$
(d) $\nabla \times (v \times B) = -\sqrt{\varepsilon \mu} \frac{\partial E}{\partial t}$

32. A laser beam propagates from fiber 1 to fiber 2 in a cavity made up of two optical fibers (as shown in the figure). The loss factor of fiber 2 is 10 dB/km. Fiber 1 d = 0 Fiber 2



If $E_2(d)$ denotes the magnitude of the electric field in fiber 2 at a distance d from the interface, the ratio $\frac{E_2(0)}{E_2(d)}$ for d=10 km,

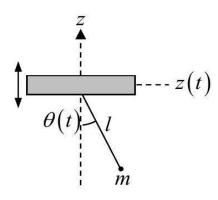
is

(a) 10^2

(b) 10^3

(c) 10^5

- (d) 10^7
- **33.** A particle in two dimensions is found to trace an orbit $r(\theta) = r_0 \theta^2$. If it is moving under the influence of a central potential $V(r) = c_1 r^{-a} + c_2 r^{-b}$, where r_0 , c_1 and c_2 are constants of appropriate dimensions, the values of a and b, respectively, are
 - (a) 2 and 4
- (b) 2 and 3
- (c) 3 and 4
- (d) 1 and 3
- **34.** The fulcrum of a simple pendulum (consisting of a particle of mass *m* attached to the support by a massless string of length l) oscillates vertically as sin z(t) =asin ωt , where ω is a constant. The pendulum moves in a vertical plane and $\theta(t)$ denotes its angular position with



respect to the z-axis.

If $\ell \frac{d^2\theta}{dt^2} + \sin \theta (g - f(t)) = 0$ (where g is the acceleration due to gravity) describes the equation of motion of the mass, then f(t) is

- (b) $a\omega^2 \sin \omega t$
- (a) $a\omega^2 \cos \omega t$ (c) $-a\omega^2 \cos \omega t$
- (d) $-a\omega^2 \sin \omega t$
- **35.** A satellite of mass *m* orbits around earth in an elliptic trajectory of semi-major axis α . At a radial distance $r = r_0$, measured from the centre of the earth, the kinetic energy is equal to half

the magnitude of the total energy. If M denotes the mass of the earth and the total energy is $-\frac{GMm}{2a}$, the value of $\frac{r_0}{a}$ is nearest to

- (a) 1.33
- (b) 1.48
- (c) 1.25
- (d) 1.67
- **36.** A particle of mass *m* in one dimension is in the ground state of a simple harmonic oscillator described by a Hamiltonian H = $\frac{p^2}{2m} + \frac{1}{2}m\omega^2x^2$ in the standard notation. An impulsive force at time t = 0 suddenly imparts a momentum $p_0 = \sqrt{\hbar m \omega}$ to it. The probability that the particle remains in the original ground state is
 - (a) e^{-2}

(b) $e^{-3/2}$

(c) e^{-1}

- (d) $e^{-1/2}$
- **37.** The energies of a two-state quantum system are E_0 and $E_0 + \alpha \hbar$, (where $\alpha > 0$ is a constant) and the corresponding normalized state vectors are $|0\rangle$ and $|1\rangle$,

respectively. At time t = 0, when the system is in the state $|0\rangle$, the potential is altered by a time independent term *V* such that $\langle 1|V|0\rangle = \frac{\hbar\alpha}{10}$. The transition probability to the state $|1\rangle$ at times $t << \frac{1}{\alpha}$, is

(a)
$$\frac{\alpha^2 t^2}{25}$$

(b)
$$\frac{\alpha^2 t^2}{50}$$
 (d) $\frac{\alpha^2 t^2}{200}$

$$(c) \frac{\alpha^2 t^2}{100}$$

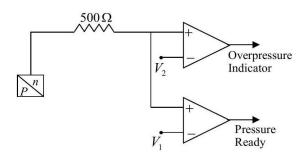
(d)
$$\frac{\alpha^2 t^2}{200}$$

- **38.** In an elastic scattering process at an energy *E*, the phase shift $\delta_0 \approx 30^\circ$, $\delta_1 \approx 10^\circ$, while the other phase shifts are zero. The polar angle at which the differential cross section peaks is closest to
 - $(a) 20^{\circ}$

(b) 10°

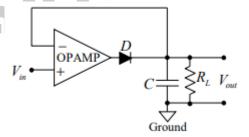
(c) 0^0

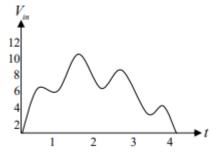
- (d) 30°
- 39. The unnormalized wavefunction of a particle in one dimension in an infinite square well with walls at x = 0 and x = a, is $\psi(x) = x(a-x)$. If $\psi(x)$ is expanded as a linear combination of the energy eigenfunctions, $\int_0^a |\psi(x)|^2 dx$ is proportional to the infinite series (you may use $\int_0^a t \sin t dt = -a \cos a + \sin a$ and $\int_0^a t^2 \sin t dt = -2 - (a^2 - 2)(\cos a +$ $2a\sin a)$
 - (a) $\sum_{n=1}^{\infty} (2n-1)^{-6}$
 - (b) $\sum_{n=1}^{\infty} (2n-1)^{-4}$
 - (c) $\sum_{n=1}^{\infty} (2n-1)^{-2}$
 - (d) $\sum_{n=1}^{\infty} (2n-1)^{-8}$
- **40.** The pressure of a gas in a vessel needs be maintained between 1.5 bar to 2.5 bar in an experiment. The vessel is fitted with a pressure transducer that generates 4 mA to 20 mA current for pressure in the range 1 bar to 5 bar. The current output of the transducer has a linear dependence on the pressure.



The reference voltages V_1 and V_2 in the comparators in the circuit (shown in figure above) suitable for the desired operating conditions, are, respectively

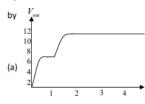
- (a) 2 V and 10 V
- (b) 2 V and 5 V
- (c) 3 V and 10 V
- (d) 3 V and 5 V
- **41.** The nuclei of 137 Cs decay by the emission of β -particles with a half of 30.08 years. The activity (in units of disintegrations per second or Bq) of a 1mg source of ¹³⁷Cs, prepared on January 1, 1980 as measured on January 1, 2021 is closest to
 - (a) 1.79×10^{16}
- (b) 1.79×10^9
- (c) 1.24×10^{16}
- (d) 1.24×10^9
- **42.** In the following circuit the input voltage $V_{\rm in}$ is such that $|V_{\rm in}| < |V_{\rm out}|$, where $V_{\rm sat}$ is the saturation voltage of the op-amp. (Assume that the diode is an ideal one and R_LC is much large than the duration of the measurement.)

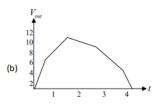


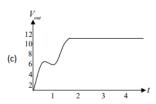


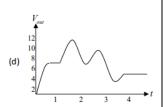
for the input voltage as shown in the figure above, the output voltage V_{out} is best

represented

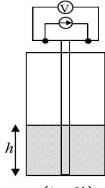








43. To measure the height *h* of a column of liquid helium in a container, a constant current *I* is sent through an *NbTi* wire of length l, as shown in the figure. The normal state resistance of the *NbTi* wire is *R*. If the superconducting transition temperature of *NbTi* is $\approx 10K$ then the measured voltage V(h) is best described by the expression



$$(a)IR\left(\frac{1}{2} - \frac{2h}{l}\right)$$

(b)
$$IR\left(1-\frac{h}{l}\right)$$

$$(c)IR\left(\frac{1}{2} - \frac{h}{l}\right)$$

(d)
$$IR\left(1-\frac{2h}{l}\right)$$

- **44.** The energy levels of a non-degenerate quantum system are $\epsilon_n=nE_0$, where E_0 is a constant and n = 1,2,3,... At a temperature T, the free energy F can be expressed in terms of the average energy E
 - (a) $E_0 + k_B T \ln \frac{E}{E_0}$ (b) $E_0 + 2k_B T \ln \frac{E}{E_0}$ (c) $E_0 k_B T \ln \frac{E}{E_0}$ (d) $E_0 2k_B T \ln \frac{E}{E_0}$
- **45.** A polymer made up of *N* monomers, is in thermal equilibrium at temperature T. Each

monomer could be of length a or 2a. The first contributes zero energy, while the second one contributes ∈. The average length (in units of Na) of the polymer at temperature $T = \frac{\epsilon}{k_B}$ is

- **46.** Balls of ten different colours labeled by a =1,2,...,10 are to be distributed among different coloured boxes. A ball can only go in a box of the same colour, and each box can contain at most one ball. Let n_a and N_a denote, respectively the numbers of balls and boxes of colour a. Assuming that $N_a \gg$ $n_a \gg 1$, the total entropy (in units of the Boltzmann constant) can be best approximated by

(a)
$$\sum_a (N_a \ln N_a + n_a \ln n_a - (N_a - n_a) \ln (N_a - n_a))$$

(b)
$$\sum_a (N_a \ln N_a - n_a \ln n_a - (N_a - n_a) \ln (N_a - n_a)$$

(c)
$$\sum_a (N_a \ln N_a - n_a \ln n_a + (N_a - n_a) \ln (N_a - n_a)$$

(d)
$$\sum_{a} (N_a \ln N_a + n_a \ln n_a + (N_a - n_a) \ln (N_a - n_a))$$

- 47. The dispersion relation of a gas of noninteracting bosons in d dimensions is $E(k) = ak^{s}$, where a and S are positive constants. Bose-Einstein condensation will occur for all values of
 - (a) d > s
 - (b) d + 2 > s > d 2
 - (c) s > 2 independent of d
 - (d) d > 2 independent of S
- **48.** Lead is superconducting below 7 K and has a critical magnetic field 800×10^{-4} tesla close to 0*K*. At 2*K* the critical current that flows through a long lead wire of radius

5 mm is closest to

- (a) 1760 A
- (b) 1670 A
- (c) 1950 A
- (d) 1840 A
- 49. Potassium chloride forms an FCC lattice, in which *K* and *Cl* occupy alternating sites. The density of KCl is 1.98 g/cm³ and the atomic weights of *K* and *Cl* are 39.1 and 35.5, respectively. The angles of incidence (in degrees) for which Bragg peaks will appear when *X*-ray of wavelength 0.4 nm is shone on a KCl crystal are
 - (a) 18.5,39.4 and 72.2
 - (b) 19.5 and 41.9
 - (c) 12.5,25.7,40.5 and 60.0
 - (d) 13.5,27.8,44.5 and 69.0
- **50.** In the reaction $p + n \rightarrow p + K^+ + X$, mediated by strong interaction, the baryon number B, strangeness S and third component of isospin I_3 of the particle Xare, respectively
 - (a) -1, -1 and -1
- (b) +1, -1 and -1
- (c) +1, -2 and $-\frac{1}{2}$ (d) -1, -1 and 0
- **51.** A ⁶⁰Co nucleus β -decays from its ground state with $I^P = 5^+$ to a state of ⁶⁰Ni with $I^P = 4^+$. From the angular momentum selection rules, the allowed values of the orbital angular momentum L and the total spin *S* of the election-antineutrino pair are
 - (a) L = 0 and S = 1
 - (b) L = 1 and S = 0
 - (c) L = 0 and S = 0
 - (d) L = 1 and S = 1
- **52.** The *Q*-value of the α -decay of ²³²Th to the ground state of ²²⁸Ra is 4082keV. The maximum possible kinetic energy of the α particle is closest to
 - (a) 4082keV
- (b) 4050keV
- (c) 4035keV
- (d) 4012keV
- **53.** The $|3,0,0\rangle$ state (in the standard notation $|n, l, m\rangle$) of the *H*-atom in the non-

relativistic theory decays to the state |1,0,0 via two dipole transitions. The transition route and the corresponding probability are

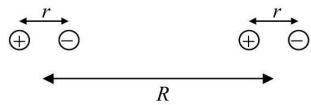
(a)
$$|3,0,0\rangle \to |2,1,-1\rangle \to |1,0,0\rangle$$
 and $\frac{1}{4}$

(b)
$$|3,0,0\rangle \rightarrow |2,1,1\rangle \rightarrow |1,0,0\rangle$$
 and $\frac{1}{4}$

(c)
$$|3,0,0\rangle \to |2,1,0\rangle \to |1,0,0\rangle$$
 and $\frac{1}{3}$

(d)
$$|3,0,0\rangle \rightarrow |2,1,0\rangle \rightarrow |1,0,0\rangle$$
 and $\frac{2}{3}$

54. A linear diatomic molecule consists of two identical small electric dipoles with an equilibrium separation *R*, which is assumed to be a constant. Each dipole has charges $\pm q$ of mass m separated by r when the molecule is at equilibrium. Each dipole can execute simple harmonic motion of angular frequency ω .



Recall that the interaction potential between two dipoles of moments p_1 and p_2 , separated by $R_{12} = R_{12}\hat{n}$ is $(p_1 \cdot p_2 3(p_1 \cdot \hat{n})(p_2 \cdot \hat{n}))/(4\pi\epsilon_0 R_{12}^3).$

Assume that $R \gg r$ and let $\Omega^2 = \frac{q^2}{4\pi\epsilon_0 mR^3}$.

The angular frequencies of small oscillations of the diatomic molecule are

(a)
$$\sqrt{\omega^2 + \Omega^2}$$
 and $\sqrt{\omega^2 - \Omega^2}$

(b)
$$\sqrt{\omega^2 + 3\Omega^2}$$
 and $\sqrt{\omega^2 - 3\Omega^2}$

(c)
$$\sqrt{\omega^2 + 4\Omega^2}$$
 and $\sqrt{\omega^2 - 4\Omega^2}$

(d)
$$\sqrt{\omega^2 + 2\Omega^2}$$
 and $\sqrt{\omega^2 - 2\Omega^2}$

55. Diffuse hydrogen gas within a galaxy may be assumed to follow a Maxwell distribution at temperature 10⁶ K, while the temperature appropriate for the H gas in the inter-galactic space, following the same distribution, may be taken to be 10⁴ K. The ratio of thermal broadening $\Delta v_G/\Delta v_{1G}$ of the Lyman- α line from the H-atoms within

the galaxy to that from the intergalactic space is closest to

(a) 100

(b) $\frac{1}{100}$ (d) $\frac{1}{10}$

(c) 10

❖ ANSWER KEY

1. b	2. c	3. a	4. b	5. c
6. b	7. c	8. b	9. b	10. a
11. d	12. d	13. c	14. d	15. a
16. b	17. a	18. c	19. b	20. d
21. b	22. d	23. d	24. d	25. b
26. c	27. b	28. d	29. b	30. c
31. a	32. c	33. b	34. d	35. a
36. d	37. c	38. c	39. a	40. d
41. d	42. a	43. d	44. c	45. d
46. b	47. a	48. d	49. a	50. b
51. a	52. d	53. c	54. c	55. c

