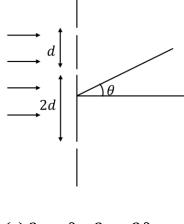


(a)
$$\frac{1}{2\pi} \sqrt{\frac{2\lambda}{m}}$$
 (b) $\frac{1}{2\pi} \sqrt{\frac{k}{m}}$
(c) $\frac{1}{2\pi} \sqrt{\frac{2k}{m}}$ (d) $\frac{1}{2\pi} \sqrt{\frac{\lambda}{m}}$

- **10.** Two points charges +2Q and -Q are kept at points with Cartesian coordinates (1,0,0) and (2,0, 0), respectively, in front of an infinite grounded conducting plate at x = 0. The potential at (x, 0,0) for $x \ge 1$ depends on x as (a) x^{-3} (b) x^{-5} (c) x^{-2} (d) x^{-4}
- **11.** The following configuration of three identical narrow slits are illuminated by monochromatic light of wavelength λ (as shown in the figure below). The intensity is measured at angle θ (where θ is the angle with the incident beam) at a large distance from the slits. If $\delta = \frac{2\pi d}{2} \sin \theta$, the intensity is proportional to



- (a) $2\cos \delta + 2\cos 2\delta$ (b) $3 + \frac{1}{8^2}\sin^2 3\delta$ (c) $3 + 2\cos \delta + 2\cos 2\delta + 2\cos 3\delta$ (d) $2 + \frac{1}{\delta^2}\sin^2 3\delta$
- **12.** The electric field of a plane wave in a conducting medium is given by

$$\vec{E}(z,t) = \hat{\iota}E_0 e^{-s/3a} \cos\left(\frac{z}{\sqrt{3}a} - \omega t\right)$$

where ω is the angular frequency and a > 0is a constant. The phase difference between the magnetic field \vec{B} and the electric field \vec{E} is

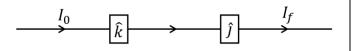
- (a) 30° and \vec{E} lags behind \vec{B} (b) 30° and \vec{B} lags behind \vec{E} (c) 60° and \vec{E} lags behind \vec{B} (d) 60° and \vec{B} lags behind \vec{E}
- **13.** The electric field \vec{E} and the magnetic field \vec{B} corresponding to the scalar and vector potentials, V(x, y, z, t) = 0 and $\vec{A}(x, y, z, t) = \frac{1}{2}\hat{k}\mu_0A_0(ct x)$, where A_0 is a constant, are (a) $\vec{E} = 0$ and $\vec{B} = \frac{1}{2}\hat{j}\mu_0A_0$ (b) $\vec{E} = -\frac{1}{2}\hat{k}\mu_0A_0c$ and $\vec{B} = \frac{1}{2}\hat{j}\mu_0A_0$ (c) $\vec{E} = 0$ and $\vec{B} = -\frac{1}{2}\hat{i}\cdot\mu_0A_0$ (d) $\vec{E} = \frac{1}{2}\hat{k}\mu_0A_0c$ and $\vec{B} = -\frac{1}{2}\hat{i}\mu_0A_0$
- **14.** A particle of mass *m* is confined in a threedimensional box by the potential

$$V(x, y, z) = \begin{cases} 0, & 0 \le x, y, z \le a \\ \infty, & \text{otherwise} \end{cases}$$

The number of eigenstates of Hamiltonian with energy $\frac{9\hbar^2\pi^2}{2ma^2}$ is (a) 1 (b) 6 (c) 3 (d) 4

- **15.** The Hamiltonian of a spin- $\frac{1}{2}$ particle in a magnetic field \vec{B} is given by $H = -\mu \vec{B} \cdot \vec{\sigma}$, where μ is a real constant and $\bar{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ are the Pauli spin matrices. If $\vec{B} = (B_0, B_0, 0)$ and the spin state at time t = 0 is an eigenstate of σ_x , then of the expectation values $\langle \sigma_x \rangle$, $\langle \sigma_y \rangle$ and $\langle \sigma_z \rangle$ (a) Only $\langle \sigma_x \rangle$ changes with time (b) Only $\langle \sigma_y \rangle$ changes with time (c) Only $\langle \sigma_z \rangle$ changes with time (d) All three change with time
- **16.** Two Stern-Gerlach apparatus S_1 and S_2 are kept in a line (*x*-axis). The directions of their magnetic fields are along the positive *z* and *y*-axes, respectively. Each apparatus only transmits particles with spins aligned in the direction of its magnetic field. If an initially unpolarized beam of spin- $\frac{1}{2}$ particles passes through this configuration, the ratio of

intensities I_0 : I_f of the initial and final beams, is



(a) 16:1 (b) 2:1 (c) 4:1 (d) 1:0

17. A particle of mass *m* is constrained to move in a circular ring to radius *R*. When a perturbation

$$V' = \frac{a}{R^2} \cos^2 \phi$$

(where *a* is a real constant) is added, the shift in energy of the ground state, to first ordor in *a*, is

(a) a/R^2	(b) $2a/R^2$
(c) $a/(2R^2)$	(d) $d/(\pi R^2)$

18. Which of the following statements concerning the coefficient of volume expansion α and the isothermal compressibility κ of a solid is true ? (a) α and κ are both intensive variables. (b) α is an intensive and k is an extensive

variable. (c) α is an extensive and κ is an intensive variable.

(d) α and *k* are both extensive variables.

19. The van der Waals equation for one mole of a gas is $\left(p + \frac{a}{V^2}\right)(V - b) = RT$. The corresponding equation of state for *n* moles of this gas at pressure *p*, volume *V* and temperature *T*. is

(a)
$$\left(p + \frac{an^2}{V^2}\right)(V - nb) = nRT$$

(b) $\left(p + \frac{a}{V^2}\right)(V - nb) = nRT$
(c) $\left(p + \frac{an^2}{V^2}\right)(V - nb) = RT$
(d) $\left(p + \frac{a}{V^2}\right)(V - nb) = RT$

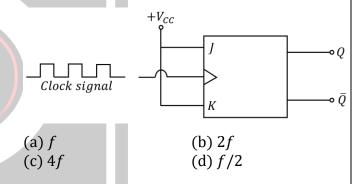
20. The number of ways of distributing 11 indistinguishable bosons in 3 different energy levels is

(a) 3 ¹¹	(b) 11 ³
(c) $\frac{(13)!}{2!(11)!}$	$(d) \frac{(11)!}{3!8!}$
$(C) \frac{1}{2!(11)!}$	$(u) \frac{1}{3!8!}$

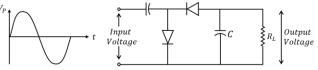
21. In a system of *N* distinguishable particles, each particle can be in one of two states with energies 0 and -E, respectively. The mean energy of the system at temperature *T*, is

(a)
$$-\frac{1}{2}N(1+e^{E/k_{g}T})$$
 (b) $-\frac{NE}{(1+e^{E/k_{B}T})}$
(c) $-\frac{1}{2}NE$ (d) $-\frac{NE}{(1+e^{-E/\kappa_{B}T})}$

22. In the following JK flip-flop circuit, J and K inputs are tied together to $+V_{cc}$. If the input is a clock signal of frequency f, the frequency of the output Q is

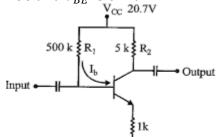


- **23.** Which of the following gates can be used as a parity checker ?
 - (a) an OR gate
 - (b) a NOR gate
- (c) an exclusive OR (XOR) gate
 - (d) an AND gate
- **24.** A sinusoidal signal with a peak voltage V_p and average value zero, is an input to the following circuit.



Assuming ideal diodes, the peak value of the output voltage across the load resistor R_L , is (a) V_P (b) $V_P/2$ (c) $2V_P$ (d) $\sqrt{2}V_P$

25. In the following circuit, the value of the common-emitter forward current amplification factor β for the transistor is 100 and V_{BE} is 0.7 V.



The base current I_B is (a) $40\mu A$ (c) $44\mu A$ (c)

(b) 30µA (d) 33µA

> PART - C

- **26.** In the function $P_n(x)e^{-x^2}$ of a real variable $x, P_n(x)$ is a polynomial of degree n. The maximum number of extrema that this function can have is (a) n + 2 (b) n - 1(c) n + 1 (d) n
- 27. The Green's function $G(x, x^2)$ for the equation $\frac{d^2y(x)}{dx^2} + y(x) = f(x)$, with the boundary values $y(0) = y\left(\frac{\pi}{2}\right) = 0$, is (a) $G(x, x') = \begin{cases} x\left(x' - \frac{\pi}{2}\right), & 0 < x < x' < \frac{\pi}{2} \\ \left(x - \frac{\pi}{2}\right), & 0 < x' < x < \frac{\pi}{2} \end{cases}$ (b) $G(x, x') = \begin{cases} -\cos x' \sin x, & 0 < x < x' < \frac{\pi}{2} \\ -\sin x' \cos x, & 0 < x' < x < \frac{\pi}{2} \end{cases}$ (c) $G(x, x') = \begin{cases} \cos x' \sin x, & 0 < x < x' < \frac{\pi}{2} \\ \sin x' \cos x, & 0 < x' < x < \frac{\pi}{2} \end{cases}$ (d) $G(x, x') = \begin{cases} x\left(\frac{\pi}{2} - x'\right), & 0 < x < x' < \frac{\pi}{2} \\ x'\left(\frac{\pi}{2} - x\right), & 0 < x' < x < \frac{\pi}{2} \end{cases}$
- **28.** The fractional error in estimating the integral $\int_0^1 x dx$ using Simpson's $\frac{1}{3}$ -rule, using a step

29. Which of the following statements is true for a 3 × 3 real orthogonal matrix with determinant +1?

(a) the modulus of each of its eigenvalues need not be 1, but their product must be 1.
(b) at least one of its eigenvalues is +1.
(c) all of its eigenvalues must be real.
(d) none of its eigenvalues need be real.

30. A particle of mass *m* moves in a central potential V(r) = -^k/_r in an elliptic orbit r(θ) = ^{a(1-e²)}/_{1+ecos θ}, where 0 ≤ θ ≤ 2π and *a* and *e* denote the semi-major axis and eccentricity, respectively. If its total energy is E = -^k/_{2a}, the maximum kinetic energy is

(b) 0

(d) 3×10^{-4}

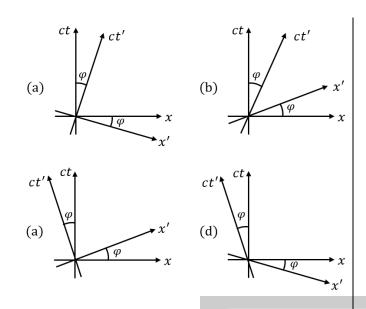
size 0.1, is nearest to

(a) 10^{-4}

(c) 10^{-2}

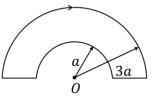
(a) $E(1-e^2)$	(b) $E \frac{(e+1)}{(e-1)}$
$(c)\frac{E}{(1-e^2)}$	(d) $E \frac{(1-e)}{(1+e)}$

- **31.** The Hamiltonian of a one-dimensional system is $H = \frac{xp^2}{2m} + \frac{1}{2}kx$, where *m* and *k* are positive constants. The corresponding Euler-Lagrange equation for the system is (a) $m\ddot{x} + k = 0$ (b) $m\ddot{x} + 2\dot{x} + kx^2 = 0$ (c) $2mx\ddot{x} - m\dot{x}^2 + kx^2 = 0$
 - (d) $mx\ddot{x} 2m\dot{x}^2 + kx^2 = 0$
- **32.** An inertial frame K' moves with a constant speed v with respect to another inertial frame K along their common x-axis in the positive x-direction. Let (x, ct) and (x', ct') denote the space-time coor dinates in the frame K and K', respectively. Which of the following space-time diagrams correctly describes the t'-axis (x' = 0 line) and the x'-axis (t' = 0 line) in the x ct plane ? (In the following figures tan $\varphi = v/c$).



33. The loop shown in the figure below carries a steady current *I*.

The magnitude of the magnetic field at the point *O* is



(a)
$$\frac{\mu_0 I}{2a}$$
 (b) $\frac{\mu}{6}$
(c) $\frac{\mu_0 I}{4a}$ (d) $\frac{\mu}{3}$

34. In the region far from a source, the time dependent electric field at a point (r, θ, ϕ) is

$$\vec{E}(r,\theta,\phi) = \hat{\phi}E_0\omega^2\left(\frac{\sin\theta}{r}\right)\cos\left[\omega\left(t-\frac{r}{c}\right)\right]$$

where ω is angular frequency of the source. The total power radiated (average over a cycle) is

(a)
$$\frac{2\pi}{3} \frac{E_0^2 \omega^4}{\mu_0 c}$$
 (b) $\frac{4\pi}{3} \frac{E_0^2 \omega^4}{\mu_0 c}$
(c) $\frac{4}{3\pi} \frac{E_0^2 \omega^4}{\mu_0 c}$ (d) $\frac{2}{3} \frac{E_0^2 \omega^4}{\mu_0 c}$

35. A hollow waveguide supports transverse electric (TE) modes with the dispersion relation $k = \frac{1}{c}\sqrt{\omega^2 - \omega_{mn}^2}$, where ω_{mn} is the mode frequency. The speed of flow of electromagnetic energy at the mode frequency is

- (a) c (b) ω_{mn}/k (c) 0 (d) ∞
- **36.** The energy of a free relativistic particle is $E = \sqrt{|\vec{p}|^2 c^2 + m^2 c^4}$, where *m* is its rest mass, \vec{p} is its momentum and *c* is the speed of light in vacuum. The ratio v_g/v_p of the group velocity v_g of a quantum mechanical wave packet (describing this particle) to the phase velocity v_p is
 - (a) $|\vec{p}|c/E$ (b) $|\vec{p}|mc^3/E^2$ (c) $|\vec{p}|^2c^2/E^2$ (d) $|\vec{p}|c/2E$
- **37.** The *n*-th energy eigenvalue E_n of a onedimensional Hamiltonian $H = \frac{p^2}{2m} + \lambda x^4$, (where $\lambda > 0$ is a constant) in the WKB approximation, is proportional to
 - (a) $\left(n + \frac{1}{2}\right)^{4/3} \lambda^{1/3}$ (b) $\left(n + \frac{1}{2}\right)^{4/3} \lambda^{2/3}$ (c) $\left(n + \frac{1}{2}\right)^{5/3} \lambda^{1/3}$ (d) $\left(n + \frac{1}{2}\right)^{5/3} \lambda^{2/3}$
- **38.** The differential scattering cross section $d\sigma/d\Omega$ for the central potential $V(r) = \frac{\beta}{r}e^{-\mu r}$, where β and μ are positive constants, is calculated in the first Born approximation. Its dependence on the scattering angle θ is proportional to (*A* is a constant below).

(a)
$$\left(A^2 + \sin^2 \frac{\theta}{2}\right)$$
 (b) $\left(A^2 + \sin^2 \frac{\theta}{2}\right)^{-1}$
(c) $\left(A^2 + \sin^2 \frac{\theta}{2}\right)^{-2}$ (d) $\left(A^2 + \sin^2 \frac{\theta}{2}\right)^2$

39. At t = 0, the wavefunction of an otherwise free particle confined between two infinite walls at x = 0 and x = L is

$$\psi(x,t=0) = \sqrt{\frac{2}{L}} \left(\sin\frac{\pi x}{L} - \sin\frac{3\pi x}{L}\right).$$

Its wavefunction at a later time $t = \frac{mL^2}{4\pi\hbar}$ is

(a)
$$\sqrt{\frac{2}{L}} \left(\sin \frac{\pi x}{L} - \sin \frac{2\pi x}{L} \right) e^{-i\pi/6}$$

(b) $\sqrt{\frac{2}{L}} \left(\sin \frac{\pi x}{L} + \sin \frac{3\pi x}{L} \right) e^{-i\pi/6}$
(c) $\sqrt{\frac{2}{L}} \left(\sin \frac{\pi x}{L} - \sin \frac{3\pi x}{L} \right) e^{-i\pi/8}$

(d)
$$\sqrt{\frac{2}{L}} \left(\sin \frac{\pi x}{L} + \sin \frac{3\pi x}{L} \right) e^{ein/6}$$

40. The pressure *P* of a system of *N* particles contained in a volume *V* at a temperature *T* is given by

$$P = nk_BT - \frac{1}{2}an^2 + \frac{1}{6}bn^3$$

where n is the number density and a and b are temperature independent constants. If the system exhibits a gas-liquid transition, the critical temperature is

(a)
$$\frac{a}{bk_B}$$

(b) $\frac{a}{2b^2k_B}$
(c) $\frac{a^2}{2bk_B}$
(d) $\frac{a^2}{b^2k_B}$

- **41.** Consider a particle diffusing in a liquid contained in a large box. The diffusion constant of the particle in the liquid is 1.0×10^{-2} cm²/s. The minimum time after which the root-mean-squared displacement becomes more than 6 cm is (a) 10 min (b) 6 min
 - (c) 30 min (d) $\sqrt{6}$ min
- **42.** A thermally insulated chamber of dimensions (L, L, 2L) is partitioned in the middle. One side of the chamber is filled with n moles of an ideal gas at a pressure P and temperature T, while the other side is empty. At t = 0, the partition is removed and the gas is allowed to expand freely. The time to reach equilibrium varies as

(a) $n^{1/3}L^{-1}T^{1/2}$ (c) $n^0LT^{-1/2}$ (b) $n^{2/3}LT^{-1/2}$ (d) $nL^{-1}T^{1/2}$

43. The maximum intensity of solar radiation is at the wavelength of $\lambda_{sun} \sim 5000$ Å and corresponds to its surface temperature $T_{sun} \sim 10^4$ K. If the wavelength of the

maximum intensity of an X-ray star is 5Å, its surface temperature is of the order of (a) 10^{16} K (b) 10^{14} K

- (c) 10^{10} K (d) 10^{7} K
- **44.** The full scale of a 3-bit digital-to-analog (DAC) converter is 7 V. Which of the following tables represents the output voltage of this 3-bit DAC for the given set of input bits?

1		>
1	ъ	۱.
t.	а	

Input bits	Output voltage
000	0
001	1
010	2
011	3

(c)

Input bits	Output voltage
000	1.25
001	2.5
010	3.75
011	5

(b)

Input bits	Output voltage
000	0
001	1.25
010	2.5
011	3.75

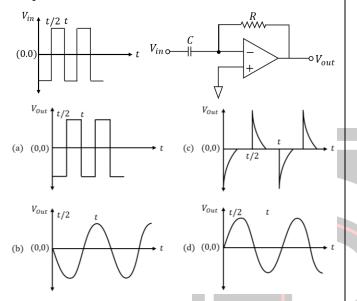
(d)

Input bits	Output voltage
000	1
001	2
010	3



45. The input V_i to the following circuit is a square wave as shown in the following figure

Which of the waveforms V_o best describes the output?



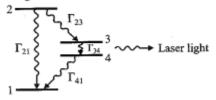
- **46.** Two signals $A_1 \sin(\omega t)$ and $A_2 \cos(\omega t)$ are fed into the input and the reference channels, tespectively, of a lock-in amplifier. The amplitude of each signal is 1 V. The time constant of the lock-in amplifier is such that any signal of frequency larger than ω is filtered out. The output of the lock-in amplifier is (a) 2 V (b) 1 V (c) 0.5 V (d) 0 V
- **47.** A photon energy 115.62keV ionizes a K-shell electron of a Be atom. One L-shell electron jumps to the K-shell to fill this vacancy and emits a photon of energy 109,2keV in the process. If the ionization potential for the L-shell is 6.4keV, the kinetic energy of the ionized efectron is

(a) 6.42keV	(b) 12.82keV
(c) 20eV	(d) 32oV

48. The value of the Lande *g*-factor for a fine structure level defined by the quantum

numbers L = 1 and J = 2 and S = 1, is (a) 11/6 (b) 4/3(c) 8/3 (d) 3/2

49. The electronic energy level diagram of a molecule is shown in the following figure.



Let Γ_{ij} denote the decay rate for a transition from the level *i* and, . The molecules are optically pumped from level 1 to 2. For the transition from level 3 to level 4 to be a lasing transition, the decay rates have to satisfy

- $\begin{array}{l} (a) \ \Gamma_{21} > \Gamma_{23} > \Gamma_{41} > \Gamma_{34} \\ (b) \ \Gamma_{21} > \Gamma_{41} > \Gamma_{23} > \Gamma_{34} \\ (c) \ \Gamma_{41} > \Gamma_{23} > \Gamma_{21} > \Gamma_{34} \\ (d) \ \Gamma_{41} > \Gamma_{21} > \Gamma_{34} > \Gamma_{23} \end{array}$
- **50.** Sodium Chloride (NaCl) crystal is a face centred cubic lattice, with a basis consisting of Na⁺ and Cl ions separated by half the body diagonal of a unit cube. Which of the planes corresponding to the Miller indices given below will not give rise to Bragg reflection of X-rays ?

(a) (2	2	0)	(b) (2	4	2)
(c) (2	2	1)	(d) (3	1	1)

51. The dispersion relation for the electrons in the conduction band of a semiconductor is given by $E = E_0 + \alpha k^2$, where α and E_0 are constants. If ω_c is the cyclotron resonance frequency of the conduction band electrons in a magnetic field *B*, the value of α is

(a)
$$\frac{\hbar^2 \omega_c}{4eB}$$
 (b) $\frac{2\hbar^2 \omega_c}{eB}$
(c) $\frac{\hbar^2 \omega_c}{eB}$ (d) $\frac{\hbar^2 \omega_c}{2eB}$

52. Hard discs of radius *R* are arranged in a twodimensional triangular lattice. What is the fractional area occupied by the discs in the closests possible packing ?

(a) $\frac{\pi\sqrt{3}}{6}$	(b) $\frac{\pi}{3\sqrt{2}}$
(C) $\frac{\pi\sqrt{2}}{5}$	$(d)\frac{2\pi}{7}$

53. Which of the following elementary particle processes does not conserve strangeness ?

(a) $\pi^0 + p \rightarrow K^+ + \Lambda^0$ (b) $\pi^- + p \rightarrow K^0 + \Lambda^0$ (c) $\Delta^0 \rightarrow \pi^0 + n$ (d) $K^0 \rightarrow \pi^+ + \pi^-$

54. A deuteron *d* captures a charged pion π^- in the l = 1 state, and subsequently decays into a pair of neutrons (*n*) via strong interaction. Given that the intrinsic parities of π^- , *d* and *n* are -1, +1 and +1 respectively, the spin-wavefunction of the final state neutrons is a (a) linear combination of a singlet and a triplet.

- (b) singlet
- (c) triplet
- (d) doublet

55. The reaction ${}^{63}Cu_{29} + p \rightarrow {}^{63}Zn_{30} + n$ is followed by a prompt β -decay of zinc ${}^{63}Zn_{30} \rightarrow {}^{63}Cu_{29} + e^+ + v_e$. If the maximum energy of the position is 2.4MeV, the *Q*-value of the original reaction in MeV is nearest to [Take the masses of electrons, proton and neutron to be 0.5MeV/c², 938MeV/c² and 939.5MeV/c², respectively]. (a) -4.4 (b) -2.4

(c) -4.8

(b) -2.4 (d) -3.4

PHYSICS

✤ ANSWER KEY

21. a	22. c	23. b	24. c	25. a
26. a	27. c	28. b	29. c	30. d
31. c	32. b	33. b	34. c	35. c
36. c	37. c	38. a	39. a	40. c
41. d	42. d	43. c	44. c	45. d
46. c	47. b	48. b	49. b	50. b
51. c	52. b	53. b	54. b	55. c
56. c	57. a	58. c	59. d	60. c
61. a	62. c	63. d	64. a	65. b
66. d	67. c	68. d	69. c	70. c
71. d	72. a	73. d	74. b	75. a