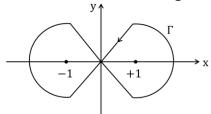
CSIR-NET,GATE, ALL SET, JEST, IIT-JAM, BARC

Contact: 8830156303 | 7741947669

❖ CSIR-UGC-NET/JRF- JUNE – 2017 PHYSICAL SCIENCES BOOKLET - [A]

> PART-B

- **1.** Which of the following cannot be eigen values of a real 3×3 matrix
 - (a) 2i, 0, -2i
- (b) 1,1,1
- (c) $e^{i\theta}$, $e^{-i\theta}$, 1
- (d) i, 1,0
- **2.** Let $u(x,y) = e^{ax}\cos(by)$ be the real part of a function f(z) = u(x,y) + iv(x,y) of the complex variable z = x + iy, where a, b are real constants and $a \ne 0$. The function f(z) is complex analytic everywhere in the complex plane if and only if
 - (a) b = 0
- (b) $b = \pm a$
- (c) $b = \pm 2\pi a$
- (d) $b = a \pm 2\pi$
- **3.** The integral $\oint_{\Gamma} \frac{ze^{in/2}}{z^2-1} dz$ along the closed contour Γ shown in the figure is



(a) 0

(b) 2π

(c) -2π

- (d) $4\pi i$
- **4.** The function y(x) satisfies the differential equation $x \frac{dy}{dx} + 2y = \frac{\cos \pi x}{x}$. If y(1) = 1, the value of y(2) is
 - (a) π

(b) 1

(c) $\frac{1}{2}$

(d) 1/4

probability density of the random variable $y = mx^2$ is

(a)
$$\frac{1}{\sqrt{2\pi\sigma^2 y}}e^{-\frac{y}{2\sigma^2}}$$
, $0 \le y < \infty$

(b)
$$\frac{1}{2\sqrt{2\pi\sigma^2 y}} e^{-\frac{y}{2\sigma^2}}, 0 \le y < \infty$$

(c)
$$\frac{1}{\sqrt{2\sigma^2}}e^{-\frac{y}{2\sigma^2}}$$
, $0 \le y < \infty$

(d)
$$\frac{1}{\sqrt{2\pi\sigma^2 y}}e^{-\frac{y}{\sigma^2}}$$
, $0 \le y < \infty$

6. The Hamiltonian for a system described by the generalized coordinate *x* and generalized momentum *p* is

$$H = \alpha x^2 p + \frac{p^2}{2(1+2\beta x)} + \frac{1}{2}\omega^2 x^2$$

where α, β and ω are constant. The corresponding Lagrangian is

(a)
$$\frac{1}{2}(\dot{x} - \alpha x^2)^2(1 + 2\beta x) - \frac{1}{2}\omega^2 x^2$$

(b)
$$\frac{1}{2(1+2\beta x)}\dot{x}^2 - \frac{1}{2}\omega^2 x^2 - \alpha x^2 \dot{x}$$

$$(c)\frac{1}{2}(\dot{x}^2 - \alpha^2 x)^2(1 + 2\beta x) - \frac{1}{2}\omega^2 x^2$$

(d)
$$\frac{1}{2(1+2\beta x)}\dot{x}^2 - \frac{1}{2}\omega^2 x^2 + \alpha x^2 \dot{x}$$

- 7. An inertial observer sees two events E_1 and E_2 happening at the same location but 6μ apart in time. Another observer moving with a constant velocity v (with respect to the first one) sees the same events to be 9μ s apart. The spatial distance between the events, as measured by the second observer, is approximately
 - (a) 300 m
- (b) 1000 m
- (c) 2000 m
- (d) 2700 m
- **8.** A ball weighing 100gm, released from a height of 5 m, bounces perfectly elastically off

a plate. The collision time between the ball and the plate is 0.5 s. The average force on the plate is approximately

(a) 3 N

(b) 2 N

(c) 5 N

(d) 4 N

9. A solid vertical rod, of length *L*, and crosssectional area A, is made of a material of Young's modulus Y. The rod is loaded with a mass M, and as a result, extends by a small amount ΔL in the equilibrium condition. The mass is then suddenly reduced to M/2. As a result the rod will undergo longitudinal oscillation with an angular frequency

- (a) $\sqrt{\frac{2YA}{ML}}$ (c) $\sqrt{\frac{2YA}{M\Delta L}}$
- (b) $\sqrt{\frac{YA}{ML}}$ (d) $\sqrt{\frac{YA}{M\Delta L}}$

10. If the root-mean-squared momentum of a particle in the ground state of a onedimensional simple harmonic potential is p_0 , then its root-mean-squared momentum in the first excited state is

- (a) $p_0 \sqrt{2}$
- (b) $p_0 \sqrt{3}$
- (c) $p_0 \sqrt{2/3}$
- (d) $p_0 \sqrt{3/2}$

11. Consider a potential barrier A of height V_0 and width b, and another potential barrier B of height $2V_0$ and the same width b. The ratio T_A/T_B , of tunnelling probabilities T_A and T_B , through barriers A and B respectively, for a particle of energy $V_0/100$, is best approximated by

(a)
$$\exp \left[(\sqrt{1.99} - \sqrt{0.99}) \sqrt{\frac{8mV_0b^2}{\hbar^2}} \right]$$

(b) $\exp \left[(\sqrt{1.98} - \sqrt{0.98}) \sqrt{\frac{8mV_0b^2}{\hbar^2}} \right]$
(c) $\exp \left[(\sqrt{2.99} - \sqrt{0.99}) \sqrt{\frac{8mV_0b^2}{\hbar^2}} \right]$
(d) $\exp \left[(\sqrt{2.98} - \sqrt{0.98}) \sqrt{\frac{8mV_0b^2}{\hbar^2}} \right]$

12. A constant perturbation H' is applied to a system for time Δt (where $H'\Delta t \ll \hbar$) leading to a transition from a state with energy E_i to another with energy E_f . If the time of application is doubled, the probability of transition will be

- (a) unchanged
- (b) doubled
- (c) quadrupled
- (d) halved

13. The two vectors $\binom{a}{0}$ and $\binom{b}{c}$ are orthogonal

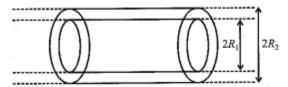
(a)
$$a = \pm 1, b = \pm 1/\sqrt{2}, c = \pm 1/\sqrt{2}$$

(b)
$$a = \pm 1, b = \pm 1, c = 0$$

(c)
$$a = \pm 1, b = 0, c = \pm 1$$

(d)
$$a = \pm 1, b = \pm 1/2, c = 1/2$$

14. Two long hollow co-axial conducting cylinders of radii R_1 and $R_2(R_1 < R_2)$ are placed in vacuum as shown in the figure below.



The inner cylinder carries a charge $+\lambda$ per unit length and the outer cylinder carries a charge $-\lambda$ per unit length. The electrostatic energy per unit length of this system is

- (a) $\frac{\lambda^2}{\pi \varepsilon_0} \ln \left(\frac{R_1}{R_2} \right)$ (b) $\frac{\lambda^2}{4\pi \varepsilon_0} \left(\frac{R_2^2}{R_1^2} \right)$ (c) $\frac{\lambda^2}{4\pi \varepsilon_0} \ln \left(\frac{R_2}{R_1} \right)$ (d) $\frac{\lambda^2}{2\pi \varepsilon_0} \ln \left(\frac{R_2}{R_1} \right)$

15. A set *N* concentric circular loops of wire, each carrying a steady current *I* in the same direction, is arranged in a plane. The radius of the first loop is $r_1 = a$ and the radius of the $n^{\rm hi}$ loop is given by $r_n = nr_{n-1}$. The magnitude B of the magnetic field at the centre of the circles in the limit $N \to \infty$, is

- (b) $\frac{\mu_0 I(e-1)}{\pi a}$ (d) $\frac{\mu_0 I(e-1)}{2a}$

16. An electromagnetic wave (of wavelength λ_0 in free space) travels through an absorbing medium with dielectric permittivity given by $\varepsilon = \varepsilon_R + i\varepsilon_J$, where $\frac{\varepsilon_I}{\varepsilon_R} = \sqrt{3}$. If the skin depth is $\frac{\lambda_0}{4\pi}$, the ratio of the amplitude of electric field *E* to that of the magnetic field *B*, in the

- medium (in ohms) is (a) 120π
- (b) 377
- (c) $30\sqrt{2}\pi$
- (d) 30π

- **17.** The vector potential $\vec{A} = ke^{-at}r\hat{r}$, (where a and k are constants) corresponding to an electromagnetic field is changed to $\vec{A}' =$ $-ke^{-at}r\hat{r}$. This will be a gauge transformation if the corresponding change $\phi' - \phi$ in the scalar potential is
 - (a) akr^2e^{-ar}
- (c) $-akr^2e^{-at}$
- (b) $2akr^2e^{-at}$ (d) $-2akr^2e^{-at}$
- **18.** A thermodynamic function G(T, P, N) = U -TS + PV is given in terms of the internal energy *U*, temperature *T*, entropy *S*, pressure P, volume V and the number of particles N. Which of the following relations is true? (In the following μ is the chemical potential).
- (a) $S = -\frac{\partial G}{\partial T}\Big|_{N,p}$ (b) $S = \frac{\partial G}{\partial T}\Big|_{N,P}$ (c) $V = -\frac{\partial G}{\partial P}\Big|_{N,T}$ (d) $\mu = -\frac{\partial G}{\partial N}\Big|_{P,T}$
- **19.** A box, separated by a movable wall, has two compartment filled by a monoatomic gas of $\frac{c_P}{c_{\gamma}} = \gamma$.

Initially the volumes of the two compartments are equal, but the pressure are $3P_0$ and P_0 , respectively. When the wall is allowed to move, the final pressure in the two compartments become equal. The final pressure is

- (a) $\left(\frac{2}{3}\right)^{\gamma} P_0$ (b) $3\left(\frac{2}{3}\right)^{7} P_0$ (c) $\frac{1}{2}\left(1 + 3^{1/\gamma}\right)^{\gamma} P_0$ (d) $\left(\frac{3^{1/\gamma}}{1 + 3^{1/\gamma}}\right)^{\gamma} P_0$
- **20.** A gas of photons inside a cavity of volume *V* is in equilibrium at temperature T. If the temperature of the cavity is changed to 2T, the radiation pressure will change by a factor of
 - (a) 2

(b) 16

(c) 8

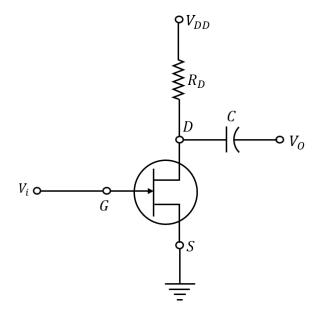
- (d) 4
- **21.** In a thermodynamic system in equilibrium, each molecule can exist in three possible states with probabilities $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{6}$ respectively. The entropy per molecule is (a) $k_B \ln 3$

(b)
$$\frac{1}{2}k_B \ln 2 + \frac{2}{3}k_B \ln 3$$

(c)
$$\frac{2}{3}k_B \ln 2 + \frac{1}{2}k_B \ln 3$$

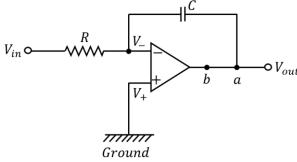
(d) $\frac{1}{2}k_{\bar{b}} \ln 2 + \frac{1}{6}k_B \ln 3$

22. In the *n*-channel JFET shown in figure below, $V_i = -2 \text{ V}$, C = 10 pF, $V_{DD} = +16 \text{ V}$ and $R_D = -2 \text{ V}$



If the drain *D*-source *S* saturation current I_{Dss} is 10 mA and the pinch-off voltage V_P is -8 V, then the voltage across points *D* and *S* is

- (a) 11.125 V
- (b) 10.375 V
- (c) 5.75 V
- (d) 4.75 V
- **23.** The gain of the circuit given below is $-\frac{1}{\omega RC}$.



The modification in the circuit required to introduce a dc feedback is to add a resistor

- (a) between a and b
- (b) between positive terminal of the op-amp and ground
- (c) in series with C
- (d) parallel to C

- **24.** A 2×4 decoder with an enable input can function as a
 - (a) 4×1 multiplexer
 - (b) 1×4 demultiplexer
 - (c) 4×2 encoder
 - (d) 4×2 priority encoder
- **25.** The experimentally measured values of the variables x and y are 2.00 ± 0.05 and 3.00 ± 0.02 , respectively. What is the error in the calculated value of z = 3y 2x from the measurements?
 - (a) 0.12

(b) 0.05

(c) 0.03

(d) 0.07

> PART - C

26. The Green's function satisfying $\frac{d^2}{dx^2}g(x,x_0) = \delta(x-x_0)$, with the boundary conditions $g(-L,x_0) = 0 = g(L,x_0)$, is

(a)
$$\begin{cases} \frac{1}{2L}(x_0 - L)(x + L), & -L \le x < x_0 \\ \frac{1}{2L}(x_0 + L)(x - L), & x_0 \le x \le L \end{cases}$$

(b)
$$\begin{cases} \frac{1}{2L}(x_0 + L)(x + L), & -L \le x < x_0 \\ \frac{1}{2L}(x_0 - L)(x - L), & x_0 \le x \le L \end{cases}$$

(c)
$$\begin{cases} \frac{1}{2L}(L - x_0)(x + L), & -L \le x < x_0 \\ \frac{1}{2L}(x_0 + L)(L - x), & x_0 \le x \le L \end{cases}$$

$$(d)\frac{1}{2L}(x-L)(x+L), -L \le x \le L$$

27. Let σ_x , σ_y , σ_z be the Pauli matrices and $x'\sigma_x + y'\sigma_y + z'\sigma_z$

$$+ y \cdot \sigma_y + z \cdot \sigma_z$$

$$= \exp\left(\frac{i\theta\sigma_z}{2}\right)$$

$$\times \left[x\sigma_x + y\sigma_y + z\sigma_z\right] \exp\left(-\frac{i\theta\sigma_z}{2}\right)$$

Then the coordinates are related as follows

(a)
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
(b) $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
(c) $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \frac{\theta}{2} & \sin \frac{\theta}{2} & 0 \\ -\sin \frac{\theta}{2} & \cos \frac{\theta}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ (d)

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} & 0 \\ \sin \frac{\theta}{2} & \cos \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

- **28.** The interval [0,1] is divided into 2n parts of equal length to calculate the integral $\int_a^1 e^{aw} dx$ using Simpson's $\frac{1}{3}$ -rule. What is the minimum value of n for the result to be exact?
 - (a) ∞

(b) 2

(c) 3

- (d) 4
- **29.** Which of the following sets of 3×3 matrices (in which a and b are real numbers) form a group under matrix multiplication?

(a)
$$\begin{cases} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & 0 \\ b & 0 & 1 \end{pmatrix} : a, b \in \mathbb{R} \\ b) \begin{cases} \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b \in \mathbb{R} \\ c) \begin{cases} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} : a, b \in \mathbb{R} \\ d) \begin{cases} \begin{pmatrix} 1 & a & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : a, b \in \mathbb{R} \\ \end{cases}$$
(d)
$$\begin{cases} \begin{pmatrix} 1 & a & 0 \\ b & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : a, b \in \mathbb{R} \\ \end{cases}$$

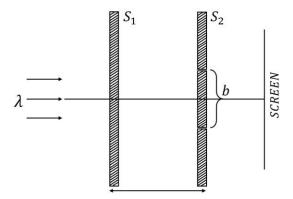
- **30.** The Lagrangian of a free relativistic particle (in one-dimension) of mass m is given by $L = -m\sqrt{1-\dot{x}^2}$, where $\dot{x}=dx/dt$. If such a particle is acted upon by a constant force in the direction of its motion, the phase space trajectories obtained from the corresponding Hamiltonian are
 - (a) ellipses
- (b) cycloids
- (c) hyperbolas
- (d) parabolas
- **31.** A Hamiltonian system is described by the canonical coordinate q and canonical momentum p. A new coordinate Q is defined as $Q(t) = q(t+\tau) + p(t+\tau)$, where t is the time and τ is a constant, that is, the new coordinate is a combination of the old coordinate and momentum at a shifted time. The new canonical momentum P(t) can be expressed as
 - (a) $p(t+\tau) q(t+\tau)$
 - (b) $p(t+\tau) q(t-\tau)$

(c)
$$\frac{1}{2}[p(t-\tau) - q(t+\tau)]$$

(d) $\frac{1}{2}[p(t+\tau) - q(t+\tau)]$

- **32.** The energy of a one-dimensional system, govern med by the Lagrangian $L = \frac{1}{2}m\dot{x}^2 \frac{1}{2}kx^{2\pi}$, where k and n are two positive constants, is E_0 . The time period of oscillation τ satisfies
- (a) $\tau \propto k^{-1/n}$ (b) $\tau \propto k^{-1/2n} E_0^{\frac{1-n}{2n}}$ (c) $\tau \propto k^{-1/2n} E_0^{\frac{1-n}{2n}}$ (d) $\tau \propto k^{-1/t} E_0^{\frac{1+n}{2n}}$
- **33.** An electron is decelerated at-a constant rate starting from an initial velocity u (where $u \ll$ c) to u/2 during which it travels a distance s. The amount of energy lost to radiation is
 - (a) $\frac{\mu_0 e^2 u^2}{3\pi m c^2 s}$ (c) $\frac{\mu_0 e^2 u}{8\pi m c s}$

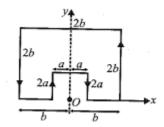
- **34.** The figure below describes the arrangement of slits and screens in a Young's double slit experiment. The width of the slit in S_1 is aand the slits in S_2 are of negligible width.



If the wavelength of the light is λ , the value of d for which the screen would be dark is

- (a) $b\sqrt{\left(\frac{a}{\lambda}\right)^2 1}$ (b) $\frac{b}{2}\sqrt{\left(\frac{a}{\lambda}\right)^2 1}$ (c) $\frac{a}{\lambda}\left(\frac{b}{\lambda}\right)^2$ (d) $\frac{ab}{\lambda}$
- (c) $\frac{a}{2} \left(\frac{b}{1}\right)^2$

35. A constant current *I* is flowing in a piece of wire that is bent into a loop as shown in the figure.



The magnitude of the magnetic field at the point 0 is

- (a) $\frac{\mu_0 I}{4\pi\sqrt{5}} \ln\left(\frac{a}{b}\right)$ (b) $\frac{\mu_0 I}{4\pi\sqrt{5}} \ln\left(\frac{1}{a} \frac{1}{b}\right)$ (c) $\frac{\mu_0 I}{4\pi\sqrt{5}} \left(\frac{1}{a}\right)$ (d) $\frac{\mu_0 I}{4\pi\sqrt{5}} \left(\frac{1}{b}\right)$

- **36.** Consider the potential $V(\vec{r}) =$ $\sum_i V_0 a^3 \delta^{(3)}(\vec{r} - \vec{r_i})$, where $\vec{r_i}$ are the position vectors of the vertices of a cube of length *a* centered at the origin and V_0 is a constant. If $V_0 a^2 \ll \frac{\hbar^2}{m}$, the total scattering crosssection, in the low energy limit, is
 - (a) $16a^2 \left(\frac{mV_0a^2}{\hbar^2}\right)$ (b) $\frac{16a^2}{\pi^2} \left(\frac{mV_0a^2}{\hbar^2}\right)^2$ (c) $\frac{64a^2}{\pi} \left(\frac{mV_0a^2}{\hbar^2}\right)^2$ (d) $\frac{64a^2}{\pi^2} \left(\frac{mV_0a^2}{\hbar^2}\right)$
- **37.** The Coulomb potential $V(r) = -e^2/r$ of a hydrogen atom is perturbed by adding H' = bx^2 (where b is a constant) to the Hamiltonian. The first order correction to the ground state energy is (The ground state wavefunction is $\psi_0 = \frac{1}{\sqrt{\pi a_0^3}} e^{-\pi/40}$).
 - (a) $2ba_0^2$
- (c) $ba_0^2/2$
- **38.** Using the trial function $\psi(x) =$ $\begin{cases}
 A(a^2 - x^2), & -a < x < a \\
 0; & \text{otherwise}
 \end{cases}$, the ground state energy of a one-dimensional harmonic oscillator is
 - (a) $\hbar\omega$

- (b) $\sqrt{\frac{5}{14}}\hbar\omega$
- $(c)\frac{1}{2}\hbar\omega$
- (d) $\sqrt{\frac{5}{7}}h\omega$
- **39.** In the usual notation |nlm) for the states of a hydrogen like atom, consider the

spontaneous transitions $|210\rangle \rightarrow |100\rangle$ and $|310\rangle \rightarrow |100\rangle$. If t_1 and t_2 are the lifetimes of the first and the second decaying states respectively, then the ratio t_1/t_2 is proportional to

(b) $\left(\frac{27}{32}\right)^3$ (d) $\left(\frac{3}{2}\right)^3$

- **40.** A random variable n obeys Poisson statistics. The probability of finding $n \ 0$ is 10^{-6} . The expectation value of n is nearest to
 - (a) 14

(b) 10^6

(c) e

- (d) 10^2
- **41.** The single particle energy levels of a noninteracting three-dimensional isotropic system, labelled by momentum k, are proportional to k^3 . The ratio \vec{P}/ε of the average pressure \vec{P} to the energy density ε at a fixed temperature, is
 - (a) 1/3

(b) 2/3

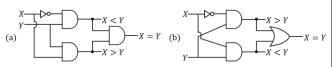
(c) 1

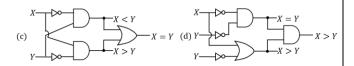
- (d) 3
- **42.** The Hamiltonian for three Ising spins S_0 , S_1 and S_2 , taking values ± 1 , is $H = -jS_0(S_1 +$ S_2). If the system is in equilibrium at temperature T, the average energy of the system, in terms of $\beta = (k_R T)^{-1}$ is
 - $(a) \frac{1 + \cosh\left(2\beta j\right)}{a}$ $2\beta \sinh(2\beta j)$
 - (b) $-2i[1 + \cosh(2\beta i)]$

 - (c) $-2/\beta$ (d) $-2j \frac{\sinh(2\beta j)}{1+\cosh(2\beta j)}$
- **43.** Let I_0 be the saturation current, η the ideality factor and v_F and v_R the forward and reverse potentials, respectively, for a diode. The ratio R_R/R_F of its reverse and forward resistances R_R and R_F respectively, varies as (In the following k_B is the Boltzmani constant, T is the absolute temperature and q is the charge).

- (a) $\frac{v_R}{v_F} \exp\left(\frac{qv_F}{\eta k_B T}\right)$ (b) $\frac{v_F}{v_R} \exp\left(\frac{qv_F}{\eta k_B T}\right)$ (c) $\frac{v_R}{v_F} \exp\left(-\frac{qv_F}{\eta k_B T}\right)$ (d) $\frac{v_F}{v_R} \exp\left(-\frac{qv_F}{\eta k_B T}\right)$

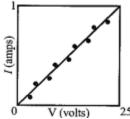
44. In the figures below, X and Y are one bit inputs. The circuit which corresponds to a one bit comparator is





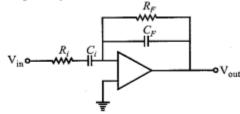
45. Both the data points and a linear fit to the current vs voltage of a resistor are shown in the graph below.

If the error in the slope is $1.255 \times 10^{-3} \Omega^{-1}$. then the value of resistance estimated from the graph is



- (a) $(0.04 \pm 0.8)\Omega$ (b) $(25.0 \pm 0.8)\Omega$
- (c) $(25 \pm 1.25)\Omega$ (d) $(25 \pm 0.0125)\Omega$
- **46.** In the following operational amplifier circuit $C_{\rm in}=10{
 m nF}$, $R_{\rm tn}=20{
 m k}\Omega$, $R_F=200{
 m k}\Omega$ and $C_F = 100 \text{pF}.$

The magnitude of the gain at a input signal frequency of 16kHz is



(a) 67

(b) 0.15

(c) 0.3

- (d) 3.5
- **47.** An atomic spectral line is observed to split into nine components due to Zeeman shift. If the upper state of the atom is ${}^{3}D_{2}$ then the lower state will be
 - (a) 3 F_{2}

(b) 3 F_{1}

(c) ${}^{3}P_{1}$

(d) ${}^{3}P_{2}$

- **48.** If the coefficient of stimulated emission for a particular transition is $2.1 \times$ $10^{19} \text{ m}^3 \text{ W}^{-1} \text{ s}^{-3}$ and the emitted photon is at wavelength 3000Å, then the lifetime of the excited state is approximately.
 - (a) 20 ns

(b) 40 ns

(c) 80 ns

(d) 100 ns

- **49.** If the bindings energies of the electron in the K and L shells of silver atom are 25.4keV and 3.34 keV, respectively, then the kinetic energy of the Auger electron will be approximately
 - (a) 22keV

(b) 9.3keV

(c) 10.5keV

(d) 18.7keV

- **50.** The energy gap and lattice constant of an indirect band gap semiconductor are 1.875eV; 0.52 nm, respectively. For simplicity take the dielectric constant of the material to be unity. When it is excited by broadband radiation, an electron initially in the valence band at k = 0 makes a transition to the conduction band. The wavevector of the electron in the conduction band, in terms of the wavevector k_{max} at the edge of the Brillouin zone, after the transition is closest to
 - (a) $k_{\text{max}}/10$

(b) $k_{\text{max}}/100$

(c) $k_{\text{max}}^t 1000$

- **51.** The electrical conductivity of copper is approximately 95% of the electrical conductivity of silver, while the electron density in silver is approximately 70% of the electron density in copper. In Drude's model, the approximate ratio $\tau_{\rm Cu}/\tau_{\rm Ag}$ of the mean collision time in copper (τ_{Cl}) to the mean collision time in silver (τ_{Ag}) is
 - (a) 0.44

(b) 1.50

(c) 0.33

(d) 0.66

52. The charge distribution inside a material of conductivity σ and permittivity ε at initial tine t = 0 is $\rho(r, 0) = \rho_0$, constant. At subsequent times $\rho(r,t)$ is given by

(a) $\rho_0 \exp\left(-\frac{\sigma t}{\varepsilon}\right)$

(b) $\frac{1}{2}\rho_0 \left[1 + \exp\left(\frac{\sigma t}{\varepsilon}\right) \right]$

(c)
$$\frac{\rho_0}{\left[1 - \exp\left(\frac{\sigma t}{\varepsilon}\right)\right]}$$
(d)
$$\rho_0 \cosh\left(\frac{\sigma t}{\varepsilon}\right)$$

53. If in a spontaneous α -decay of $^{232}_{92}$ U at rest, the total energy released in the reaction is Q, then the energy carried by the α -particle is

(a) $\frac{57Q}{58}$ (c) $\frac{Q}{58}$

54. The range of the nuclear force between two nucleons due to the exchange of pions is 1.40fm. If the mass of the pion is 140MeV/c^2 and the mass of the rho-meson is 770MeV/c^2 , then the range of the force due to exchange of rho mesons is

(a) 1.40fm

(b) 7.70fm

(c) 0.25 fm

(d) 0.18fm

- **55.** A baryon *X* decays by strong interaction as $X \to \Sigma^+ + \pi^- + \pi^0$, where Σ^+ is a member of the isotriplet $(\Sigma^*, \Sigma^0, \Sigma^-)$. The third component I_3 of the isospin of X is
 - (a) 0

(b) 1/2

(c) 1

(d) 3/2

❖ ANSWER KEY

1. d	2. b	3. c	4. d	5. a
6. a	7. c	8. c	9. a	10. b
11. a	12. c	13. c	14. c	15. d
16. d	17. c	18. a	19. c	20. b
21. c	22. d	23. d	24. b	25. a
26. a	27. b	28. b	29. c	30. c
31. d	32. b	33. d	34. b	35.
36. c	37. b	38. b	39.	40. a
41. c	42. d	43. b	44. c	45. b
46. d	47. c	48. c	49. d	50. c
51. d	52. a	53. a	54. c	55. a