

- **8.** The time period of a particle of mass *m*, undergoing small oscillations around x = 0,

in the potential
$$V = V_0 \cosh\left(\frac{x}{L}\right)$$
, is

(a)
$$\pi \sqrt{\frac{mL^2}{V_0}}$$
 (b) $2\pi \sqrt{\frac{mL^2}{2V_0}}$
(c) $2\pi \sqrt{\frac{mL^2}{V_0}}$ (d) $2\pi \sqrt{\frac{2mL^2}{V_0}}$

- **9.** Consider the decay $A \rightarrow B + C$ of a relativistic spin $-\frac{1}{2}$ particle *A*. Which of the following statements is true in the rest frame of the particle *A* ?
 - (a) The spin of both *B* and *C* may be 1/2(b) The sum of the masses of *B* and *C* is
 - greater than the mass of A
 - (c) The energy of B is uniquely determined
 - by the masses of the particles
 - (d) The spin of both B and C may be integral
- **10.** Two current-carrying circular loops, each of radius *R*, are placed perpendicular to each other, as shown in the figure below.

The loop in the *xy*-plane carries a current I_0 while that in the *xz*-plane carries a current $2I_0$. The resulting magnetic field \vec{B} at the origin is

(a) $\frac{\mu_0 I_0}{2R} [2\hat{j} + \hat{k}]$ (b) $\frac{\mu_0 I_0}{2R} [2\hat{j} - \hat{k}]$ (c) $\frac{\mu_0 I_0}{2R} [-2\hat{j} + \hat{k}]$ (d) $\frac{\mu_0 I_0}{2R} [-2\hat{j} - \hat{k}]$

11. An electric dipole of dipole moment $\vec{P} = qb\hat{i}$ is placed at the origin in the vicinity of two charges +q and -q at (L, b) and (L, -b),

respectively, as shown in the figure below.

The electrostatic potential at the point $\left(\frac{L}{2}, 0\right)$ is

(a)
$$\frac{qb}{\pi\varepsilon_0} \left(\frac{1}{L^2} + \frac{2}{L^2 + 4b^2}\right)$$
 (b) $\frac{4qbL}{\pi\varepsilon_0[L^2 + 4b^2]^{3/2}}$
(c) $\frac{qb}{\pi\varepsilon_0L^2}$ (d) $\frac{3qb}{\pi\varepsilon_0L^2}$

12. A monochromatic and linearly polarized light is used in a Young's double slit experiment. A linear polarizer, whose pass axis is at an angle 45° to the polarization of the incident wave, is placed in front of one of the slits. If I_{max} and I_{min} , respectively, denote the maximum and minimum intensities of the interference pattern on the screen, the visibility, defined as the ratio $\frac{I_{max}-I_{min}}{I_{max}+I_{min}}$, is

(a)
$$\frac{\sqrt{2}}{3}$$
 (b) $\frac{2}{3}$
(c) $\frac{2\sqrt{2}}{3}$ (d) $\sqrt{\frac{2}{3}}$

13. An electromagnetic wave propagates in a nonmagnetic medium with relative permittivity $\varepsilon = 4$. The magnetic field for this wave is

 $\vec{H}(x,y) = \hat{k}H_0\cos(\omega t - \alpha x - \alpha\sqrt{3}y),$ where H_0 is a constant. The corresponding electric field $\vec{E}(x,y)$ is (a) $\frac{1}{4}\mu_0H_0c(-\sqrt{3}\hat{i}+\hat{j})\cos(\omega t - \alpha x - \alpha\sqrt{3}y)$ (b) $\frac{1}{4}\mu_0H_0c(\sqrt{3}\hat{i}+\hat{j})\cos(\omega t - \alpha x - \alpha\sqrt{3}y)$ (c) $\frac{1}{4}\mu_0H_0c(\sqrt{3}\hat{i}-\hat{j})\cos(\omega t - \alpha x - \alpha\sqrt{3}y)$

(d)
$$\frac{1}{4}\mu_0H_0c(-\sqrt{3}\hat{\imath}-\hat{\jmath})\cos(\omega t-\alpha x-\alpha\sqrt{3}y)$$

14. The ground state energy of an anisotropic harmonic oscillator described by the potential $V(x, y, z) = \frac{1}{2}m\omega^2 x^2 + 2m\omega^2 y^2 + 8m\omega^2 z^2$ (in units of $\hbar\omega$) is (a) 5/2 (b) 7/2

(c) 3/2

15. The product $\Delta x \Delta p$ of uncertainties in the position and momentum of a simple larmonic oscillator of mass *m* and angular frequency ω in the ground state $|0\rangle$, is $\hbar/2$. The value of the product $\Delta x \Delta p$ in the state $e^{-i\vec{p}l/\hbar}|0\rangle$, where *l* is a constant and \hat{p} is the momentum operator) is

(a)
$$\frac{\hbar}{2} \sqrt{\frac{m\omega l^2}{\hbar}}$$
 (b) \hbar
(c) $\frac{\hbar}{2}$ (d) $\frac{\hbar^2}{m\omega l^2}$

16. Let the wavefunction of the electron in a hydrogen atom be

$$\psi(\vec{r}) = \frac{1}{\sqrt{6}}\phi_{200}(\vec{r}) + \sqrt{\frac{2}{3}}\phi_{21-1}(\vec{r}) - \frac{1}{\sqrt{6}}\phi_{100}(\vec{r})$$

where $\phi_{nIm}(\vec{r})$ are the eigenstates of the Hamiltonian in the standard notation. The expectation value

of the energy in this state is

- (a) -10.8eV (b) -6.2eV (c) -9.5eV (d) -5.1eV
- **17.** Three identical spin $-\frac{1}{2}$ particles of mass m are confined to a one-dimensional box of length L, but are otherwise free. Assuming that they are non-interacting, the energies of the lowest two energy eigenstates, in units of $\frac{\pi^2\hbar^2}{2mL^2}$, are
 - (a) 3 and 6 (b) 6 and 9 (c) 6 and 11 (d) 3 and 9
- **18.** The heat capacity C_V at constant volume of a metal, as a function of temperature, is $\alpha T + \beta T^3$, where α and β are constants. The temperature dependence of the entropy at constant volume is

(a) $\alpha T + \frac{1}{3}\beta T^{3}$ (b) $\alpha T + \beta T^{3}$ (c) $\frac{1}{2}\alpha T + \frac{1}{3}\beta T^{3}$ (d) $\frac{1}{2}\alpha T + \frac{1}{4}\beta T^{3}$

19. The rotational energy levels of a molecule are $E_l = \frac{\hbar^2}{2I_0} l(l+1)$, where l = 0,1,2,... and I_0 is its mo. ment of inertia. The contribution of the rotational motion to the Helmholtz free energy per molecule at low temperature in a

dilute gas of these molecules, is approximately

(a)
$$-k_B T \left(1 + \frac{\hbar^2}{I_0 k_B T}\right)$$
 (b) $-k_B T e^{-\frac{\hbar^2}{I_0 k_B T}}$
(c) $-k_B T$ (d) $-3k_B T e^{-\frac{\hbar^2}{I_0 k_B T}}$

20. The vibrational motion of a diatomic molecule may be considered to be that of a simple harmonic oscillator with angular frequency ω . If a gas of these molecules is at a temperature *T*, what is the probability that a randomly picked molecule will be found in its lowest vibrational state?

(a)
$$1 - e^{-\frac{\hbar\omega}{k_BT}}$$
 (b) $e^{-\frac{\hbar\omega}{2k_BT}}$
(c) $\tanh\left(\frac{\hbar\omega}{k_BT}\right)$ (d) $\frac{1}{2}\operatorname{cosech}\left(\frac{\hbar\omega}{2k_BT}\right)$

21. Consider an ideal Fermi gas in a grand canonical ensemble at a constant chemical potential. The variance of the occupation number of the single particle energy level with mean occupation number \bar{n} is

(a)
$$\bar{n}(1-\bar{n})$$
 (b) $\sqrt{\bar{n}}$
(c) \bar{n} (d) $1/\sqrt{\bar{n}}$

22. Consider the following circuit, consisting of an RS flip-flop and two AND gates. Which of the following connections will allow the entire circuit to act as a JKip-flop?

- (a) connect Q to pin 1 and \overline{Q} to pin 2
- (b) connect Q to pin2 and \overline{Q} to pin 1
- (c) connect Q to K input and \overline{Q} to J input
- (d) connect Q to J input and \overline{Q} to K input
- **23.** The truth table below gives the value Y(A, B, C), where A, B and C are binary variables.

Α	В	С	Y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1

The output \overline{Y} can be represented by (a) $Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$ (b) $Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$ (c) $Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$ (d) $Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$

24. A sinusoidal signal is an input to the following circuit :

Which of the following graphs best describes the output waveform?

25. A sinusoidal voltage having a peak value of V_P is an input to the following circuit, in which the DC voltage is V_b .

Assuming an ideal diode, which of the following best describes the output

- 26. The Green's function G(x, x') for the equation $\frac{d^2 y(x)}{dx^2} = f(x), \text{ with the boundary values} \\
 y(0) = 0 \text{ and } y(1) = 0, \text{ is} \\
 (a) <math>G(x, x') = \begin{cases} \frac{1}{2}x(1-x'), & 0 < x < x' < 1 \\ \frac{1}{2}x'(1-x), & 0 < x' < x < 1 \end{cases} \\
 (b) <math>G(x, x') = \begin{cases} x(x'-1), & 0 < x < x' < 1 \\ x'(1-x), & 0 < x' < x < 1 \end{cases} \\
 (c) <math>G(x, x') = \begin{cases} -\frac{1}{2}x(1-x), & 0 < x < x' < 1 \\ \frac{1}{2}x'(1-x), & 0 < x' < x < 1 \end{cases} \\
 (d) <math>G(x, x') = \begin{cases} x(x'-1), & 0 < x < x' < 1 \\ \frac{1}{2}x'(1-x), & 0 < x' < x < 1 \end{cases} \\
 (d) G(x, x') = \begin{cases} x(x'-1), & 0 < x < x' < 1 \\ x'(x-1), & 0 < x' < x < 1 \end{cases}$
- **27.** A 4 × 4 complex matrix *A* satisfies the relation $A^{\dagger}A = 4I$, where *I* is the 4 × 4 identify matrix. The number of independent real parameters of *A* is
 - (a) 32 (b) 10 (c) 12 (d) 16
- **28.** The contour *C* of the following integral $\oint_C dz \frac{\sqrt{(z-1)(z-3)}}{(z^2-25)^3}$, in the complex *z*-plane is shown in the figure below.

This integral is equivalent to an integral along the contours

- **31.** The Hamiltonian of a classical onedimensional harmonic oscillator is $H = \frac{1}{2}(p^2 + x^2)$, in suituble units. The total time derivative of the dynamical variable $(p + \sqrt{2}x)$ is (a) $\sqrt{2}p - x$ (b) $p - \sqrt{2}x$ (c) $p + \sqrt{2}x$ (d) $x + \sqrt{2}p$
- **32.** A relativistic particle of mass m and charge e is moving in a uniform electric field of strength b. Starting from rest at t = 0, how much time will it take to reach the speed c/2?

(a)
$$\frac{1}{\sqrt{3}} \frac{mc}{e\varepsilon}$$
 (b) $\frac{mc}{e\varepsilon}$
(c) $\sqrt{2} \frac{mc}{e\varepsilon}$ (d) $\sqrt{\frac{3}{2}} \frac{mc}{e\varepsilon}$

33. In an inertial frame, uniform electric and magnetic fields \vec{E} and \vec{B} are perpendicular to each other and satisfy $|\vec{E}|^2 - |\vec{B}|^2 = 29$ (in suitable units). In another inertial frame, which moves at a constant velocity with respect to the first frame, the magnetic field is $2\sqrt{5}\hat{k}$. In the second trame, an electric field

consistent with the previous observations is

- (a) $\frac{7}{\sqrt{2}}(\hat{\imath} + \hat{j})$ (b) $7(\hat{\imath} + \hat{k})$ (c) $\frac{7}{\sqrt{2}}(\hat{\imath} + \hat{k})$ (d) $7(\hat{\imath} + \hat{j})$
- **34.** Electromagnetic wave of angular frequency ω is propagating in a medium in which, over a band of frequencies, the refractive index is
 - $n(\omega) \approx 1 \left(\frac{\omega}{\omega_0}\right)^2$, where ω_0 is a constant. The ratio $\frac{v_g}{v_p}$ of the group velocity to the phase velocity at $\omega = \frac{\omega_0}{2}$ is (a) 3 (b) 1/4 (c) 2/3 (d) 2
- **35.** A rotating spherical shell of uniform surface charge and mass density has total mass *M* and charge *Q*. If its angular momentum is *L* and magnetic moment is μ , then the ratio μ/L is
 - (a) Q/3M (b) 2Q/3M(c) Q/2M (d) 3Q/4M
- **36.** Consider the operator $A_x = L_y p_z L_z p_y$, where L_i and p_i denote, respectively, the components of the angular momentum and momentum operators. The commutator $[A_x, x]$, where x is the x-component of the position operator, is

(a)
$$-i\hbar(zp_z + yp_y)$$
 (b) $-i\hbar(zp_z - yp_y)$
(c) $i\hbar(zp_z + yp_y)$ (d) $i\hbar(zp_z - yp_y)$

- **37.** A one-dimensional system is described by the Hamiltonian $H = \frac{p^2}{2m} + \lambda |x|$, where $\lambda > 0$. The ground state energy varies as a function of λ as
 - (a) $\lambda^{5/3}$ (b) $\lambda^{2/3}$ (c) $\lambda^{4/3}$ (d) $\lambda^{1/3}$
- **38.** If the position of the electron in the ground state of a hydrogen atom is measured, the probability that it will be found at a distance $r \ge a_0$ (a_0 being Bohr radius) is nearest to (a) 0.91 (b) 0.66 (c) 0.32 (d) 0.13
- **39.** A system of spin- $\frac{1}{2}$ particles is prepared to be in the eigenstate of σ_z with eigenvalue +1.

The system is rotated by an angle of 60° about the *x*-axis. After the rotation, the fraction of the particles that will be measured to be in the eigenstate of σ_z with eigenvalue +1 is (a) 1/3 (b) 2/3

- (a) 1/3 (b) 2/3(c) $\frac{1}{4}$ (d) $\frac{3}{4}$
- **40.** The Hamiltonian of a one-dimensional Ising model of *N* spins (*N* large) is

 $H = -J \sum_{i=1}^{N} \sigma_i \sigma_{i+1}$ where the spin $\sigma_i = \pm 1$ and *J* is a positive constant. At inverse temperature $\beta = \frac{1}{k_B T}$, the correlation function between the nearest neighbour spins $\langle \sigma_i \sigma_{i+1} \rangle$ is (a) $\frac{e^{-\beta J}}{(e^{\beta J} + e^{-\beta J})}$ (b) $e^{-2\beta J}$ (c) $\tanh(\beta J)$ (d) $\coth(\beta J)$

- **41.** At low temperatures, in the Debye approximation, the contribution of the phonons to the heat capacity of a two-dimensional solid is proportional to (a) T^2 (b) T^3 (c) $T^{1/2}$ (d) $T^{3/2}$
- **42.** A particle hops on a one-dimensional lattice with lattice spacing *a*. The probability of the particle to hop to the neighbouring site to its right is *p*, while the corresponding probability to hop to the left is q = 1 p. The root-mean-squared deviation $\Delta x =$

 $\sqrt{\langle x^2 \rangle - \langle x \rangle^2}$ in displacement after N steps, is

(a) $a\sqrt{Npq}$	(b) $aN\sqrt{pq}$	
(c) $2a\sqrt{Npq}$	(d) $a\sqrt{N}$	

43. The energy levels accessible to a molecule have energies $E_1 = 0$, $E_2 = \Delta$ and $E_3 = 2\Delta$ (where Δ is a constant). A gas of these molecules is in thermal equilibrium at temperature *T*. The specific heat at constant volume in the high temperature limit ($k_BT \gg \Delta$) varies with temperature as

(a) $1/T^{3/2}$	(b) $1/T^3$
(c) $1/T$	(d) $1/T^2$

44. The input V_i to the following circuit is a square wave as shown in the following figure.

Which of the waveforms best describes the output ?

45. The amplitude of a carrier signal of frequency f_0 is simusoidally modulated at a frequency $f' * f_0$. Which of the following graphs best describes its power spectrum?

- **46.** The standard deviation of the following set of data : {10.0,10.0,9.9,9.9,9.8,9.9,9.9,9.9,9.9,9.8,9.9} (a) 0.10 (b) 0.07 (c) 0.01 (d) 0.04
- **47.** The diatomic molecule HF has an absorption line in the rotational band at 40 cm⁻¹ for the isotope ¹⁸ F. The corresponding line for the isotope ¹⁹ F will be shifted by approximately (a) 0.05 cm^{-1} (b) 0.11 cm^{-1} (c) 0.33 cm^{-1} (d) 0.01 cm^{-1}
- **48.** The excited state (n = 4, l = 2) of an electron in an atom may decay to one or more of the lowe energy levels shown in the diagram below.

$$n = 4 - \frac{1}{l=1}$$
$$n = 3 \prod_{l=0}^{l=1} l = 2$$
$$n = 2 \rightarrow \frac{1}{l=1}$$

Of the total emitted light, a fraction 1/4 comes from the decay to the state (n = 2, l = 1). Based of selection rules, the fractional intensity of the emission line due to the decay to the state (n = 3, l = 1) will be (a) $\frac{3}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) 0

- **49.** The volume of an optimal cavity is 1 cm³. The number of modes it can support within a bandwidtif of 0.1 nm, centred at $\lambda = 500$ nm, is of the order of (a) 10³ (b) 10⁵ (c) 10¹⁰ (d) 10⁷
- **50.** Barium Titanate (BaTiO₃) crystal has a cubic perovskite structure, where the Ba²⁺ ions are

at the vertices of a unit cube, the O^{2-} ions are at the centres of the faces while the T^{2+} is at the centre. The number of optical phonon modes of the crystal is

51. The dispersion relation of optical phonons in a cubic crystal is given by $\omega(k) = \omega_0 - ak^2$, where ω_0 and a are positive constants. The contribution to the density of states due to these phonons with frequencies just below ω_0 is proportional to

(a) $(\omega_0 - \omega)^{1/2}$	(b) $(\omega_0 - \omega)^{3/2}$
(c) $(\omega_0 - \omega)^2$	(d) $(\omega_0 - \omega)$

- **52.** A silicon crystal is doped with phosphorus atoms. (The binding energy of a **H** atom is 13.6eV, the dielectric constant of silicon is 12 and the effective mass of electron in the crystal is $0.4m_e$). The gap between the donor energy level and the bottom of the conduction band is nearest to
 (a) 0.01eV(b) 0.08eV(c) 0.02eV(d) 0.04eV
- **53.** Assume that pion-nucleon scattering at low energies, in which isospin is conserved, is described by the effective interaction potential $V_{\text{eff}} = F(r)\vec{I}_x \cdot \vec{I}_N$, where F(r) is a function of the radial separation r and \vec{I}_m and \vec{I}_N denote, respectively, the isospin vectors of a pion and the nucleon. The ratio $\sigma_{I=3/2}/\sigma_{I-\nu/2}$ of the scattering cross-sections corresponding to total isospins I = 3/2 and 1/2, is (a) 3/2 (b) 1/4 (c) 5/4 (d) $\frac{1}{2}$
- **54.** A nucleus decays by the emission of a gamma ray from an excited state of spin-parity 2⁺to the ground state with spin-parity 0⁺. What is the type of the corresponding radiation ?

(a) magnetic dipole
(b) electric quadrupole
(c)
electric dipole
(d) m a g netic quadrupole

55. The low lying energy levels due to the vibrational excitations of an even-even nucleus are shown in the figure below.

The spin-parity <i>j</i> ^p	of the level E_1 is
(a) 1 ⁺	(b) 1 ⁻
(c) 2 ⁻	(d) 2 ⁺

✤ ANSWER KEY

1. d	2. c	3.	4. c	5. b
6.	7. c	8. c	9. c	10. c
11. c	12. b	13. a	14. b	15. c
16. d	17. b	18. a	19. d	20. a
21. a	22. b	23. b	24. a	25. c
26. d	27. d	28. b	29. c	30. c
31. a	32. a	33. a	34. a	35. c
36. a	37. b	38. b	39. d	40. c
41. a	42. c	43. d	44. c	45. b
46. b	47. b	48. a	49. c	50. a
51. a	52. d	53. b	54. b	55. d